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Motivation for Study on Disruption Dynamics

Understanding of disruption dynamics of RS/NrS plasmas
is important for long-pulsed tokamak reactors like ITER.

Disruptions of RS plasmas have not been well understood.

Disruptive termination has been studied and clarified.

(P.L. Taylor et al., Phys. Rev. Lett. 76, 916 (1996).)

Contrary to common belief of occurring negative Ip spike in Reversed
Shear (RS) plasmas, positive Ip spike has been observed in JT-60U.

Measurements of positive current spike (Ip spike) with a flattening of
current profile in DIII-D disruptive Normal Shear (NrS)) plasmas.

e.g. Vertical Displacement Event avoidance at neutral point
(Y. Nakamura et al., Nucl. Fusion 36, 643 (1996).)
(R. Yoshino et al., Nucl. Fusion 36, 295 (1996).)
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A new understanding explicates the Ip spike behavior
of tokamak disruptions in detail .

Tokamak Simulation Code (TSC) can model realistic JT-60U
disruptions which simulates experiments, incorporating
such physics as:

Dynamics of rapid Ip profile change inside plasmas

Effects of pressure drop (βp drop) including shell structure

outside plasmas

Various Ip spikes, positive Ip spike or negative Ip spike, was
observed at the thermal quench in JT-60U experiments.

The mechanisms has not been well understood.
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Surprising feature of Ip spike

Negative Ip spike (~-5%) was observed

in RS discharges at larger RJ.

Maximum (~10%) was observed
in NrS discharges at smaller RJ.
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A radial shift of plasma through βp drop results in a positive Ip spike

during a thermal quench phase.
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δFR =(Q 0,δψ = 0) n: decay index

(A. Fukuyama et al., Jpn. J. Appl.
Phys. 14, 871 (1975).)
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Current Spike Observed during High βp NrS Disruption
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Current Spike Observed during High βp RS Disruption
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Shell effect on the current spike under
the βp drop ? TSC simulation
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TSC Modeling of Axisymmetric MHD
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TSC enables us to realistically simulate with experiments.
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The βp drop results in a positive Ip spike.
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w/ Shell effect

The βp drop results in a positive current spike.
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Destruction of magnetic surface (tearing mode)

P.L. Taylor et al., Phys. Rev. Lett. 76, 916 (1996).

Abrupt Change in Current Profile

(A.H. Boozer, J. Plasma Phys. 35, 133 (1986).)

D.J. Ward, S.C. Jardin, Nucl.
Fusion 29, 905 (1996).

effect is insufficient to explain .δβp
~

Effect of abrupt change in current profile

δIp
~

Another mechanism?

Ohm's Low modified by Hyper-Resistivity

TSC models anomalous current viscosity

Measurements of current flattening
in DIII-D NrS plasmas
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TSC with the hyper-resistivity reproduced
a redistribution in current profile

Current Profile Change in NrS plasmas (βp~0) TSC

Current flattening explicates both spikes
of positive Ip and negative voltage similar
to experiments.
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t1

Redistribution of current profile in the same
manner as NrS plasmas

Current Profile Change in RS plasmas (βp~0) TSC

Further lowering of li results in both spikes
of positive Ip and negative voltage even in
RS plasmas.
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Conclusions

A new understanding obtained by TSC simulation reasons out
the various current spike behaviors of JT-60U RS/NrS plasmas.

(a) Induced eddy current in vacuum vessel

(b) Abrupt current profile change

βp drop causes the Ip spike that is positive

with smaller RJ while negative with larger RJ.

Further lowering of li similar to NrS plasmas is a plausible candidate

for the mechanism of positive Ip spike observed even in RS plasmas.

Important effects on Ip spikes
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