TSC Simulation of Disruptive Current Termination on JT-60U Reversed Shear Plasmas

N. Takei, Y. Nakamura¹), H. Tsutsui, Y. Kawano¹), T. Ozeki¹), S. Konishi¹), S. Tsuji-lio, R. Shimada and S.C. Jardin²)

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan

1)Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka, Ibaraki, 311-0193, Japan

2)Princeton Plasma Physics Laboratory, Princeton, P.O. Box 451, New Jersey 08543, USA

Motivation for Study on Disruption Dynamics

• Disruptive termination has been studied and clarified.

e.g. Vertical Displacement Event avoidance at neutral point

(Y. Nakamura et al., Nucl. Fusion 36, 643 (1996).) (R. Yoshino et al., Nucl. Fusion 36, 295 (1996).)

Measurements of positive current spike (I_p spike) with a flattening of current profile in DIII-D disruptive Normal Shear (NrS) plasmas. (P.L. Taylor et al., Phys. Rev. Lett. 76, 916 (1996).)

Contrary to common belief of occurring negative I_p spike in Reversed Shear (RS) plasmas, positive I_p spike has been observed in JT-60U.

Disruptions of RS plasmas have not been well understood.

Understanding of disruption dynamics of RS/NrS plasmas is important for long-pulsed tokamak reactors like ITER.

Contents

 Various I_p spikes, positive I_p spike or negative I_p spike, was observed at the thermal quench in JT-60U experiments.

The mechanisms has not been well understood.

- Tokamak Simulation Code (TSC) can model realistic JT-60U disruptions which simulates experiments, incorporating such physics as:
 - Effects of pressure drop (^β_p drop) including shell structure outside plasmas
 - Dynamics of rapid Ip profile change inside plasmas

 \rightarrow

A new understanding explicates the I_p spike behavior of tokamak disruptions in detail .

JT-60U Experiment in contrast to Analytical Model

• A radial shift of plasma through β_p drop results in a positive I_p spike during a thermal quench phase.

$$\delta \tilde{I}_{p} = -\frac{\delta \beta_{p}}{2 \left[\ln(\frac{8R_{p}}{a}) + \frac{1}{2}(I_{i}-1) - 2\left\{ (n-1)\left(\ln(\frac{8R_{p}}{a}) + \frac{1}{2}(I_{i}-3) + \beta_{p}\right) + 1 \right\} \right]}{\approx -0.05 \ \delta \tilde{\beta}_{p} (\delta \tilde{\beta}_{p} < 0) \quad (\because \delta \Psi = 0, \delta F_{R} = 0) \quad n: \text{ decay index}}$$
(A. Fukuyama et al., Jpn. J. Appl.
Phys. 14, 871 (1975).)

Surprising feature of I_p spike
$$I_{p} \sim 2-3MA$$

β

Current Spike Observed during High β_p NrS Disruption

Current Spike Observed during High $\beta_p RS$ Disruption

TSC Modeling of Axisymmetric MHD

$$\frac{\partial \mathbf{m}}{\partial t} + \mathbf{F}_{\mathsf{V}}(\mathbf{m}) = \mathbf{j} \times \mathbf{B} - \nabla \mathbf{p}$$

 m : plasma momentum density (= ρv)
 Fv(m) : artificial viscosity operator instead of v .∇v

- Disruption dynamics including shell structure
- Resistive diffusion of I_p profile

(TSC, DINA) β_p drop

- (TSC, DINA, ASTRA)
- → Current flattening (TSC etc.)

TSC enables us to realistically simulate with experiments.

Current Spike due to β_0 Drop at Outer Position (R_J=3.8m) TSC

 $\beta_p drop (\delta \tilde{\beta}_p \sim -1)$ leads to inward shift ($\delta R_J \sim -0.2m$) and results in $\delta \tilde{l}_p \sim -3\%$.

• Analytical model without shell effects The β_p drop results in a positive I_p spike. $\widetilde{\delta I_p} \approx -0.05 \, \widetilde{\delta \beta_p} \sim 5\%$

TSC simulation

Induced toroidal eddy current in the vacuum vessel

2 16 t=0.6 ms θ 12 8 0 4 δl_{vv}/l_p~7% 0 -2 1.5 -4 2π 5.5 3.5 π 0 R (m) θ Negative I_p spike

Current spike due to β_p Drop at Inner Position (R_J=3.1m) TSC

Analytical model without shell effects

The β_p drop results in a positive current spike.

TSC simulation

Induced toroidal eddy current in the vacuum vessel

Abrupt Change in Current Profile

Current Profile Change in NrS plasmas ($\beta_p \sim 0$) **TSC**

time (ms)

Conclusions

Important effects on I_p spikes

(a) Induced eddy current in vacuum vessel

 β_p drop causes the I_p spike that is positive with smaller R_J while negative with larger R_J. (strong R_J dependence)

(b) Abrupt current profile change

Further lowering of I_i similar to NrS plasmas is a plausible candidate for the mechanism of positive I_p spike observed even in RS plasmas.

 A new understanding obtained by TSC simulation reasons out the various current spike behaviors of JT-60U RS/NrS plasmas.

