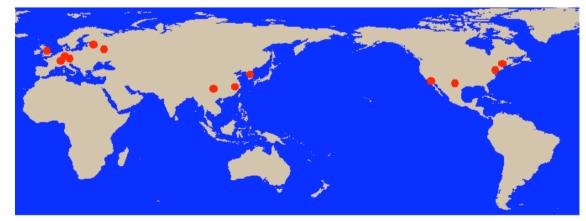
Transport study in reactor-relevant regime on JT-60U towards advanced steady-state tokamak operation

H. Takenaga and the JT-60 Team

> Japan Atomic Energy Research Institute

30th EPS Conference on Controlled Fusion and Plasma Physics St Petersburg, Russia, July 7-11 2003

Enhanced collaboration with domestic and foreign universities/laboratories


• Many collaborators from domestic and foreign universities and laboratories contribute to the JT-60 program.

In JAPAN

From abroad

ASIPP(China), Ecole Polytech. (Switzerland), EFDA-JET (EU), GA (USA), loffe Inst. (RF), KBSI(Korea), KFA Juelich (Germany), Kurchatov Inst. (RF), LANL (USA), MPI-Garching (Germany), MIT (USA), ORNL (USA), PPPL (USA), SWIP (China), TRINITI(RF), U. Stractclyde (UK)

Introduction

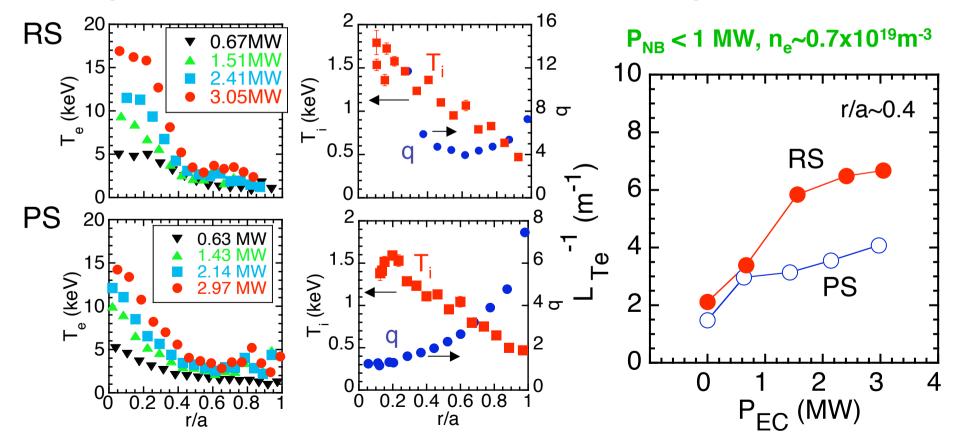
JT-60U

- ITER Physics R&D
- Advanced Tokamak Concepts for ITER & DEMO
 - High integrated performance;
 - high values of $\beta_{\text{N}},$ HH $_{\text{y2}},$ f $_{\text{BS}},$ f $_{\text{CD}},$ n/n $_{\text{GW}},$ fuel purity, P $_{\text{rad}}/\text{P}_{\text{abs}}$

 $\begin{array}{l} \text{High } \beta_p \text{ mode plasma} \\ \text{(weak positive shear)} \\ \text{Reversed shear plasma} \end{array} \right) \quad \text{with internal transport} \\ \text{barrier (ITB)} \end{array}$

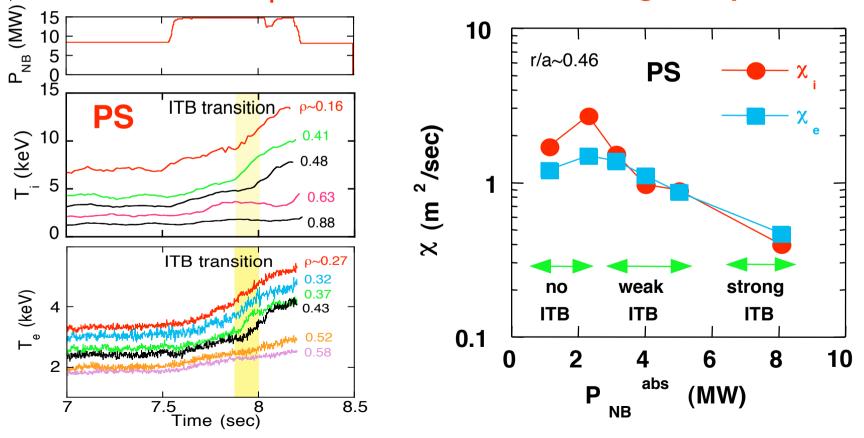
- Dominant electron heating (T_e>T_i) and small central fueling;
 - T_e ITB formation
 - Heat and particle (including impurity) transport Sustainment/degradation of ITB and confinement ? Heavy impurity accumulation ?

Development of ECRF (110 GHz) and N-NB systems ECRF : 3 MW for 2.7 s (4 units of gyrotron) N-NB : 6.2 MW for 1.7 s (381 keV)



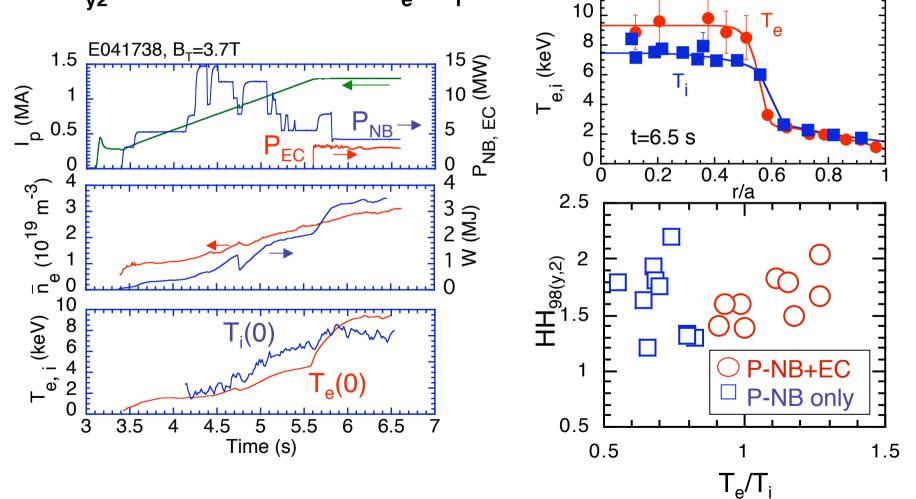
OUTLINE

- T_e ITB formation condition under dominant electron heating by ECRF
- Heat and particle transport in the ITB region under dominant electron heating / small central fueling by ECRF
 - Reversed shear plasma
 - Weak positive shear plasma
- Summary and Future plan


Strong T_e ITB is formed without T_i ITB in RS plasma.

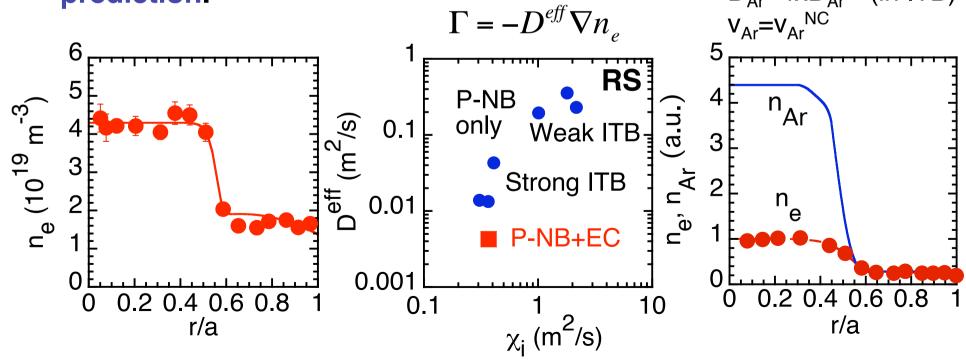
- T_e ITB is important to improve confinement in ITER/DEMO, where T_e is expected to be higher than T_i.
- With no/low P-NB power, strong T_e ITB is formed in RS plasma (P_{EC}~ 1 MW) but not formed in PS plasma (P_{EC} up to 3 MW).

Strong T_e ITB is formed with T_i ITB in PS plasma.

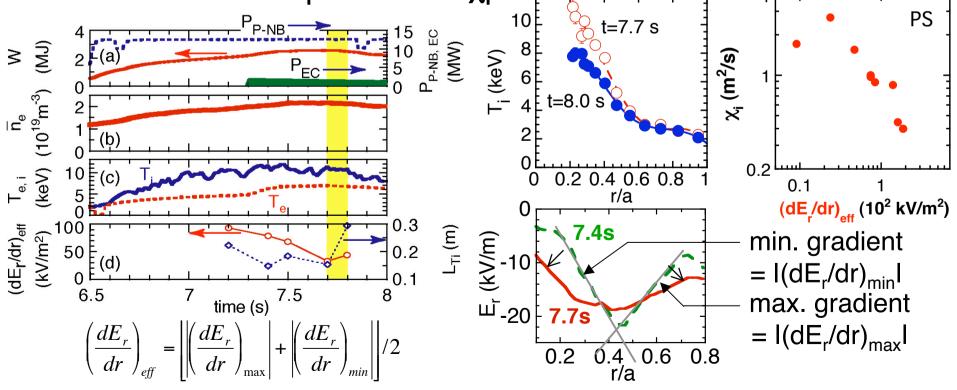

- Formation of strong T_e ITB requires strong T_i ITB in PS plasma with high power P-NB heating.
- Electron heat transport strongly correlates with ion heat transport.
 - Sustainment of T_i ITB under electron heating is important.

High confinement is obtained with T_e>T_i in RS plasma.

12

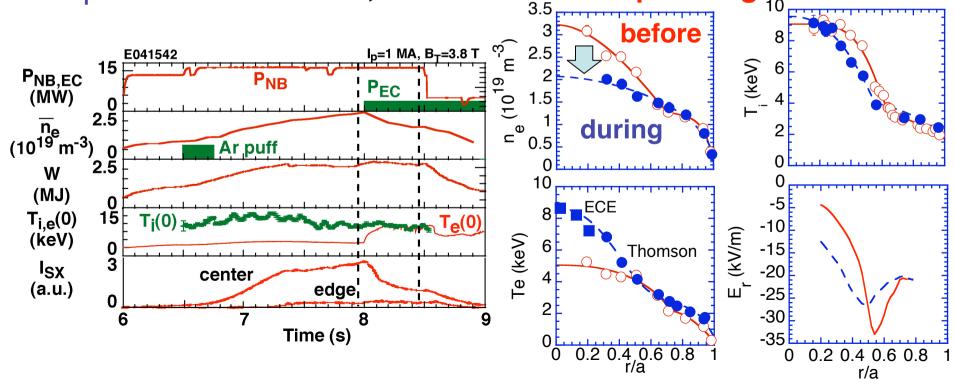

- In RS plasma, strong T_i and T_e ITBs are maintained under dominant electron heating (P_{ele.}~1.6xP_{ion}).
- HH_{y2} ~2 is achieved with $T_e > T_i$.

Strong n_e ITB is kept and Ar is accumulated even with small central fueling in RS plasma

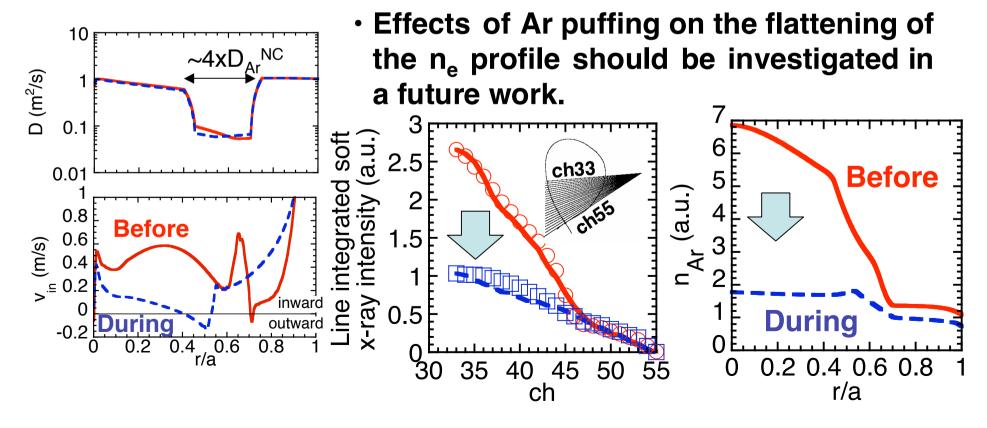

JT-60Ú

- A flat density profile is favorable for suppression of impurity accumulation due to small neoclassical inward pinch velocity.
- In RS plasma, strong n_e ITB is maintained even with small central fuelling and D^{eff} is smaller with small central fuelling.
- Ar is accumulated inside the ITB even with small central fueling, although Ar accumulation is weaker than neoclassical prediction.

T_i ITB degrades by injecting ECRF in PS plasma


- Toroidal rotation is flattened and decrease of E_r shear followed by degradation of T_i ITB is observed.
- Remarkable correlation between effective E_{r} shear and χ_{i} is observed.
- The T_i ITB degradation is consistent with the correlation between effective E_r shear and χ_i . 12

Density profile is flattened by injecting ECRF in PS plasma with Ar puffing


- Large decrease of n_e is observed with small amount of Ar puffing in PS plasma.
- Density and central soft x-ray signal are drastically reduced by injecting ECRF.
- \cdot n_e ITB is almost lost, but T_i ITB is sustained.

• E_r shear also reduced, however is still kept at high value.

Ar is exhausted from the inside of the ITB.

- n_{Ar} profile estimated from soft X-ray profile is more peaked by a factor of 1.6 than n_e profile before ECRF injection and similar as n_e profile during ECRF injection in PS plasma.
- The reduction of n_{Ar} is consistent with the reduction of v_{Ar}^{NC} due to the reduction of n_e gradient
- D_{Ar} is higher by a factor of 4 than D_{Ar}^{NC} in the ITB region.

Summary

JT-60U

 ITB transport is investigated under dominant electron heating and small central fueling by using ECRF system.

	Reversed shear	Weak positive shear
T _e ITB formation	•Strong T _e ITB without T _i ITB (P _{EC} ~1MW)	•No strong T _e ITB without T _i ITB (P _{EC} <3MW)
Sustainment/ degradation of ITB and confinement	 Sustainment of strong ITBs (T_{i,e}, n_e) High confinement of HH_{y2}~2 with T_e/T_i>1 	•T _i ITB degradation •Flattening of n _e profile and sustainment of T _i ITB with Ar puff
Heavy impurity accumulation	•Ar accumulation	•Ar exhaust from the inside of the ITB with flattening of n _e profile

 Further study is necessary with N-NB : Are the effects observed in PS plasma intrinsic to ECRF injection or electron heating ?

Main objectives in JT-60U 2003-4 experiment campaign

- Long sustainment (~30-60 s) of high performance plasmas for >τ_R and ~τ_{wall}
 Extension of operation pulse length (15 s -> 65 s)
 NB power : 14 MWx30s
 RF power : ~2 MWx60s
- Sustainment of high β_N (3-3.5) by stabilizing NTM
- Extension to high density towards highly integrated performance