

Recent progress on JET towards the ITER Reference scenario at high density

Jef Ongena LPP-ERM/KMS Association "EURATOM-Belgian State" B-1000 Brussels Belgium

On behalf of Task Force S1 and all colleagues who contributed to the work programme of JET under EFDA

28th Conference on Controlled Fusion and Plasma Physics Madeira, Portugal 18-22 June 2001

J.Ongena

EUROPEAN FUSION DEVELOPMENT AGREEMENT

OUTLINE

- Introduction : Background
- Three different methods used to obtain simultaneously high density and high confinement
- ELM changes observed and hints of ELM mitigation
- MHD effects and avoidance
- Outlook

Different Operating Modes in Tokamaks

H-Mode: This Talk For advanced operating modes: A. Becoulet, Invited Talk, 2:30pm Friday EUROPEAN FUSION DEVELOPMENT AGREEMENT

Definitions

Greenwald Density :

O EFDA

- Empirical density limit
- Maximum density under normal operating conditions H-factor :
 - Characterizes energy confinement quality w.r.t. 'scaling' expressions (L-Mode/H-Mode)
 - $H_{98(y,2)}$ =1 ==> Plasma confinement of ELMy H-Mode

Normalized beta :

- Ratio of plasma pressure to magnetic pressure
- Normalized to a critical value for plasma stability

EUROPEAN FUSION DEVELOPMENT AGREEMENT

ITER Physics Goals

• Achieve extended burn in inductively driven plasmas with the ratio of fusion power to auxiliary power of at least 10.

• Simultaneously required in ELMy H-Mode for Q=10 :

 $n/n_{GW}=0.85, H_{H98(y,2)}=1, \beta_N = 1.8, Z_{eff}=1.7$

High density high confinement discharges on JET Three main methods used

Motivation : Maintain good H-Mode confinement at densities close to the Greenwald density

- 1. Plasma shaping : high triangularity
- 2. Impurity seeding

3. High field side pellet launch with optimized pellet fuelling cycle

EUROPEAN FUSION DEVELOPMENT AGREEMENT

First Method : Plasma Shaping

• Increase triangularity (up to δ =0.5)

• Properties :

- $H_{98(y,2)}$ =1, β_N =2, n/n_{GW}=0.9-1.0, Z_{eff}=1.5
- For quasi-stationary phases
- Robust against high levels of gas puffing
- Trade-off between heating power and $\boldsymbol{\delta}$
- Density peaking sometimes observed

R.Sartori, P3.003 G.Saibene, Oral 28, Poster P3.002 V.Parail, P5.027 M.Valovic, P.3.008 J.G.Cordey, P.3011

High Confinement at High Density with High Triangularity

Pulse No: 52014 2.5MA / 2.7T, $P_{nb} = 14MW$

JG01.230-7c

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Extension of Good Confinement Results to Lower Triangularities

R. Sartori, Poster P3.003

Density Peaking in ITER like ELMy H-Mode Plasmas

• Fuelling below a certain limit, and long time scales

• Similarities with regimes found on DIII-D, ASDEX-U

• High Greenwald factor ~ 1.1

M. Valovic, Poster P3.008

JET Confinement Depends on Triangularity and ELM Type

EFDA

G. Saibene, Oral 28, Poster P3.002 R.Sartori, Poster P3.003

- Higher triangularity allows higher densities at high confinement
- For all triangularities: Confinement degrades with density
- Simultaneously obtained $n/n_{GW} \sim 0.9$ and $H_{98(y,2)} \sim 1at~high~= 0.5$
- Trade-off between triangularity and heating power: lower discharges need higher P_{in}/P_{L-H}

- Aim : Realization of integrated operational scenario combining
 - High density
 - High confinement
 - Acceptable power density on first wall
- Using Ar and Ne as seeding impurity
- Using cautious D dosing
- Low and high δ , with and without septum

P.Dumortier, P3.004 M.E.Puiatti, P3.007 S.Jachmich, P3.013 G.Jackson, P3.017 M.Z.Tokar, P3.032

Two Basic Plasma Shapes Used for Impurity Seeding

Low Triangularity X-Point on Septum

High Triangularity

Impurity Seeding in ELMy H-mode (Low Triangularity, X-Point on Septum)

- Strong D and Ar puff to increase density
- Afterpuff with gentle D and Ar puff
- Long quasi-steady phase of high H and n/n_{GW}

P. Dumortier, Poster P3.004

UROPEAN FUSION DEVELOPMENT AGREEMENT

Impurity Seeding Dramatically Improves Plasma Performance (Low Triangularity, X-Point on Septum)

Pulse No: 53028 Pulse No: 53030 1.2 n_e (10²⁰m⁻³) 1.0 1.0 0.5 H_{98(y,2)} * n / n_{GW} Without Ar Seeding 0.8 T_e (keV) NM 3 2 With Ar Seeding 0.6 Ar in afterpuff No Ar in afterpuff 1 JG01.230-14c JG01.230-29c 0.4 1.2 2.5 3.0 3.5 0.6 0.8 1.0 2.0 4.0 0.4 n / n_{GW} R (m)

28th EPS Conference on Controlled Fusion and Plasma Physics, Madeira

ICRH with Central Deposition Avoids Impurity Accumulation

M. Nave, Poster P.3009 M. E. Puiatti, Poster P.3007

High Confinement, Density and Radiation in Impurity Seeded High Triangularity Plasmas

Argon seeding with high triangularity plasmas:

- Combines $H_{98(v,2)} \sim 1$ and $n/n_{GW} \sim 1$
- Higher densities due to Ar (increase in p)
- High radiation (but somewhat higher Zeff)
- q(0) < 1 with ICRH and Ar seeding

P. Dumortier, Poster P3.004 M. E. Puiatti, Poster P3.007 H. R. Koslowski, Poster P.3010 M. Nave, Poster P.3009

Radiative mantle discharges

FUSION

D E V E L O P M E N T

Present Results

EUROPEAN

Third Method : High Field Side Pellet Injection

- Pellet injection in medium triangularity plasmas
- Optimised pellet injection cycle
- High confinement and high densities reached

P.T.Lang, P3.012

 \mathbf{H} \mathbf{H} \mathbf{J}

P. T. Lang, Poster P3.012

High Density Peaking with Pellet Injection

HHI

Different ways to obtain density peaking in JET

- With pellets : central fuelling
- Also seen with :
 - Highly triangular discharges
 - Impurity seeding in high AND low δ discharges
 - Possible physical mechanisms:
 - Stabilization of microturbulence, v/D changes
 - Beam fuelling

EUROPEAN FUSION DEVELOPMENT AGREEMENT

ELM changes observed using different techniques Hints for ELM mitigation

- In high density, high δ discharges :
 - low power losses / ELM
 - lower frequency
- With impurity seeding :
 - impurity radiation reduces heat load

G.Saibene, Oral 28 and P3.002 R.Sartori, P3.003 A.Loarte, P3.005 Th. Eich, P5.010

S.Jachmich, P3.013 G.Maddison, P3.018 M.Becoulet, P4.076 W.Fundamenski, Oral 13, P4.073

Frequency of Type I ELMs stays low at high density

A.Loarte, Poster P3.005

J.Ongena

AGREEMENT

EUROPEAN FUSION DEVELOPMENT

Correlation between ELM size and pedestal collisionality (Loarte scaling)

ped

Independent of magnetic field plasma current heating power

ELM size prediction on the basis of edge parameters A.Loarte, Poster P3.005

Broadband Turbulence Between ELMs at High Density High Triangularity Plasmas ~ 0.47

LOW Density

HIGH Density

• Can be used for mitigation?

G. Saibene, Oral 28, Poster P.3002 A. Loarte, Poster P3.005 R. Sartori, Poster P3.003

Strong Reduction of Divertor Target Temperature During Argon Seeding

- IR thermography measurements show: Baseline temperature reduced by factor of ~5 ELM effects are also reduced
- Further studies needed: comparison to thermocouple and divertor probes

P. Dumortier, Poster P3.004 A. Loarte, Poster P3.005 T. Eich, Poster P5.010 W, Fundamenski, Poster P.4.073

- Appearance of MHD modes correlated with high β
 - 2/1 NTM disrupts
 - 3/2 NTM correlates to confinement degradation
 - 5/4 and 4/3 NTM more central, but destroy density peaking
 - destabilize sawteeth using ICRH
- Also correlated with impurity accumulation :
 - avoid with central heating ICRH

O.Sauter, Oral 8, P5.001 H.R.Koslowski, P3.010, P3.011, P5.005 M.F.F.Nave, P3.009

Three Different Methods used to match ITER Requirements

	PELLETS	IMPURITY SEEDING		SHAPING		
	JET HT HFS Pellets Pulse No: 53212, 2.5MA/2.4T	JET LT Ar seeded Pulse No: 53030, 2.5MA/2.4T	JET EHT Ar seeded Pulse No: 53550, 2.3MA/2.4T	JET HT High power Pulse No: 50844, 1.9MA/1.9T	JET "ITER shape" Pulse No: 53299, 2.5MA/2.7T	ITER
H _{98 (y,2)}	0.8 – <mark>0.95</mark>	1.00	0.96	0.91	0.91	1.0
N,th	1.7 – 1.8	1.75	2.00	2.00	1.90	1.81
n _e / n _{GW}	1.0 – 1.1	0.86	0.9 – 1.1	1.00	1.1	0.85
Z _{eff}	1.8 – 2.0	1.9	2.2	1.4	1.5	1.7
P _{rad} / P _{tot}	0.50	0.50	0.7	0.44	0.40	0.58
,	1.7, 0.32	1.66, 0.22	1.7, 0.4	1.74, 0.34	1.74, <mark>0.48</mark>	1.84,0.5
q ₉₅	3.0	3.0	3.1	3.4	3.2	3.0
pulse / E	~5	12	10	17	15	110

Three Methods Used to Obtain H_{98(y,2)} = 1, n/n_{GW} > 0.9 for ITER

Summary of JET ELMy H-Mode results this year

Simultaneously achieved projected ITER Q=10 parameters

 $n/n_{GW} \ge 0.9, \ H_{H98(y,2)} \sim 1, \ Z_{eff} \le 1.7, \ \beta_N \ge 1.8$

- For quasi-stationary durations up to several seconds
- Using different methods
- Promising ELM mitigation techniques
- MHD avoidance techniques successfully applied

OUTLOOK AND FURTHER WORK

- Extend good confinement results to higher current, density and field Narrow the gap to ITER plasmas
 - Higher densities : fuelling with high confinement (pellets, advanced gas fuelling control)
 - Reduce core impurity content while keeping high edge radiation
 - Control of MHD
- ELM Mitigation studies

Preparing a solid basis for future JET experiments and possible D-T campaigns