Comments on Metrics, etc

Dale M. Meade for the National FIRE Study Team

FESAC Development Path Workshop General Atomics, San Diego, CA

January 14, 2003

http://fire.pppl.gov

The Diversified International Portfolio for Fusion Based on FIRE

Is this the

Lowest-Cost Most-Efficient Path to an Attractive DEMO for MFE?

Dale Meade

FESAC Development Path Panel

Orlando, FL

November 15, 2002

Updated version of APS DPP Poster and Presentation to FESAC Dev Path Panel

- FIRE Based Development Path Discussed at Orlando, any questions
 - Cost profiles were developed for FIRE-Based and ITER-Based Paths
 - Details are on the web, along with most of the talks from this Workshop

- Metrics
 - Some metrics are sprinkled throughout report, need more
 - need both dimensionless and dimensional H & $n\tau_{E}T$, β & p, P/R & MWm⁻²

(Lawson Diagram)

(Special Subcommittee on ITER Report - Kikuchi)

The Lawson Diagram is the 1st Metric for MFE BP Confinement

Needs to be updated for more recent results, tokamaks split into short pulse H-Modes, longer pulse AT modes

Dimensional and Normalized Parameters could be Used to Track Progress

Issues	<u>Metrics</u>			xtrapolation* to DEMO
Configuration Optimization - confinement - power density - Steady state	Η β _N f _{bs}	nτ _E T nT	τ _Ε τ _{CR} τ _{CR}	~20 @10τ _E ~3? ~3?
- Exhaust Power	P/R	MW/m ²	τ_{div}, τ_{FW}	>10
Burning Plasma Physics - Fusion gain (self heating) - Energetic Particles	$f_{\alpha}^{}$ β_{α}	Q	10τ _E τ _{MHD}	~100@10τ _Ε
Materials Development and Testing - Plasma Facing Components - Neutron Resistance - Enviromental Acceptance	MW/m ²	MJ/m ² /pulse dpa Ci/MJ@50 yrs		large
Fusion Tech. Develop't and Testing - magnets - chamber technology	Bmax MW/m ²	MJ M.I/m ²		~60
- tritium - remote handling	kG-T	kG-T/yr		30 - 1000
- operational availability	MTBF	%		~100

* Extrapolation of Dimensional Parameter

Plasma Metrics for the Development of Fusion

Fusion Needs a Significant Deliverable on the Decade Timescale

- 35 Years to the Moon (Fusion) Doesn't Generate Interest and support.
- The creation and control of a burning plasma is the critical issue for fusion. Marburger to NRC Panel
 - 16 years to BP in ITER (ITER Site Study VG), a little long vulnerable
 - < 10 years to Ignition in NIF or LMJ
- What could be done in by MFE in a decade? Unlimited by Cash Flow TFTR Const approval July 1975, Const + 3 yrs = Dec 85 = 10.5 yrs
 FIRE has 3 yrs design, 6 yrs construction time, 3 yrs DD, = 12 years

"I want fusion in a decade"