High Field Approach to Demo

Miklos Porkolab In Collaboration with: P.T. Bonoli, L. Bromberg, J. Minervini, J.Schultz

MIT Plasma Science and Fusion Center

35 YEAR DEVELOPMENT PATH FESAC SUBPANEL MEETING

General Atomics, San Diego,CA January 14, 2003

M. P./ 35 year plan/1.14.2003

Power-Plant Studies Indicate the Need for Steady State DEMO Must Be an "Advanced Tokamak" or "AT"

- Attractive AT reactor concepts are Aries-RS and Aries-AT
- Efficient off-axis non-inductive (RF) current drive needed to accompany the high bootstrap current fraction in the core
- Aries-RS operates at 8.0 T on -axis, 16 T at the coils;
 → coils can be developed in a 20 year time horizon
- Need accelerated SC magnet development program
- Aries-AT and Aries-RS unify

Higher Magnetic Field is a Winner

• Higher B-field (16 T at the coil, 8 T on-axis) would reduce some of tokamak's physics constraints:

Higher plasma current for better confinement
More stable MHD operation (higher q) at given current
Higher off-axis non-inductive (LH) current drive efficiency
Density limit mitigated

- Fusion Power Density: $P \sim {}^{2}B_{T}^{4} = (/)^{2} (B_{T}^{2})^{2}$
- Need to take advantage of potential advances in SC magnet development to accelerate fusion energy

Example of an Aries-RS Size AT Tokamak: Advanced Tokamak Burning Plasma Experiment: ATBX M. Porkolab, J. Schultz et al., 1998 IAEA Fus. Conf. 1998, V4 p.1267

- For 6.35T, $Q_{fus} = 10$ at ITER89-L=2.5 (ITER98-H=1.3), $f_{BS}=0.71$, $P_{CD}=80MW$ (Nevin's Spreadsheet)
- (**Red** values are new, corresponding to $B_T=8.0 T$)
 - a = 1.75 m; $R_0 = 5.60 \text{ m};$ $I_P = 12 \text{ MA};$ $B_T = 6.35 (-8.0) \text{ T};$
 - $n_{e}(0) = 2.0 \times 10^{20} \text{ m}^{-3}$

$$- T_{e}(0) = T_{i}(0) = 22 (30) \text{ keV};$$

- $E_{\text{NBI}} = 0.5 \text{ MeV}, 20 \text{ MW}$ (1.0 MeV, 20 -10 MW);
- $f_{LH} = 5.5 \text{ GHz}, 60 \text{ MW} (30 40 \text{ MW})$
- nIR/P = LH = 0.20 0.23 (0.30 0.35)
- At B=8.0T, $Q_{fus} = 15-20$ feasible with 50 MW total P_{CD}

M. P./ 35 year plan/1.14.2003

ACCOME Current Drive Results for ATBX at 8.0T: Increase LH current drive efficiency from 0.20 to 0.30

Case	T _{e0} (keV)	P _{LH} (MW)	I _{LH} (MA)	γ_{LH} (A/W/m ²	I _P (MA)	f _{BS}	P _{NB} (MW)	I _{NB} (MA)
1	22	60	2.93	0.36	12.20	0.68	20	0.96
2	30	60	3.20	0.33	14.51	0.70	20	1.15
3	30	40	2.01	0.30	13.20	0.76	20	1.15
4	30	30	1.50	0.29	12.70	0.79	20	1.15
5	30	30	1.53	0.30	12.30	0.82	10	0.69
6	30	40	2.08	0.31	12.84	0.78	10	0.69

Cases 1 – 6: $P_{LH-R} = 0.1 \times P_{LH}$, $n_{//} = 0.10$, $n_{//-F} = 1.6$, $n_{//-R} = 4.8$ Cases 1 – 4 run with $E_B = 0.5$ MeV Cases 5 & 6 run with $E_B = 1.0$ MeV M. P./ 35 year plan/1.14.2003

ACCOME Simulation of 8T ATBX - Case 6 $P_{LH} = 40 \text{ MW}, f_0 = 5.5 \text{ GHz}, n_{//-F} = 1.60$

M. P./ 35 year plan/1.14.2003

ACCOME Simulation of 8T ATBX - Case 6 LHRF Power Deposition and F_e (r, E) $P_{LH} = 40$ MW, $f_0 = 5.5$ GHz $n_{//-F} = 1.60$ $n_{//} = 0.10$

M. P./ 35 year plan/1.14.2003

ACCOME Simulation of 8T ATBX - Case 6 $P_{LH} = 40 \text{ MW}, P_{NB} = 10 \text{ MW}$ $_t = 2.64\%, N = 2.88$

M. P./ 35 year plan/1.14.2003

Magnet Technology Can Be Ready for DEMO Requirements

- Superconductors can easily achieve 16 T peak field operation using Nb₃Sn
 - Laboratory magnets operate today routinely at \geq 16 T
 - 900 MHz NMR magnets operating at 21.2T are beginning service now 1000 Mhz at 23.4T are near term
- Fusion magnets are many orders of magnitude larger in size and stored energy than NMR magnets and operating conditions are much more severe (pulsed fields, radiation environment)
- Technology advances are required for:
 - Support structures including cases and plates
 - Significant area for innovation, including advanced materials development
 - Increased radiation life of insulation and superconductor
 - Cost reduction of superconductor for large scale production
 - Innovative instrumentation and quench detection and protection systems for safety and enhanced reliability
 - Advanced superconductor (e.g., high temperature superconductors) for higher temperature operation and increased heat capacity are desirable but not necessary

OST has achieved world record Jc values for Nb₃Sn made by two processes

BERKELEY LAB

11-1M02P./ 35 year plan/1.14.2003 Superconducting Magnet Program

Ron Scanlan

Progress in Development of Nb₃Sn for High Field Use Has Been Extraordinary

35 Year Plan for Magnet Technology (Preliminary)

• <u>1st Requirement</u> : Need enhanced emphasis on base magnet technology program (cost per year !)

	Present Annual Funding (FY-03\$)	0-5 Years (FY-03\$)	5-10 Years (FY-03\$)	10-20 Years (FY-03\$)
Conservative Funding Profile	\$2M (actual)	\$4M	\$6M	\$10M
Aggressive (i.e., realistic) Funding Profile	\$3M (needed)	\$5M	\$8M	\$12M

M. P./ 35 year plan/1.14.2003

20 Year Plan for Magnet Technology (continued)

• <u>2nd Requirement</u> : Need new magnet test facilities (integrated cost!)

Time Frame	0-3 Years	3-6 Years	10-20 Years
Facility	Pulsed Superconducting Magnet (PSM) at 12T + PTF Upgrade	Upgrade PSM to 16T	Prototype DEMO Magnet* at 16T
Facility Cost (FY03-\$)	PSM - \$2M PTF - \$1M	\$4M	\$100M

* Test in international test facility

35 Year Plan for Magnet Technology (continued)

- Technology improvements must be made in the following components*:
- High performance/cost superconductor (both low and high temperature superconductors)
- Stabilizer
- Improved coil structure
- Conductor structure (e.g., conduit, plates)
- Radiation resistant insulation
- Thermal Isolation
- High current, low loss joints
- Leads
- Improved quench detection and instrumentation for increased system reliability
- Higher voltage, lower losses isolators and feedthroughs
- Reduced cost, increased reliability refrigeration system

^{* &}quot;US Fusion Program Requirements for Superconducting Magnet Research", J.V. Minervini and J.H. Schultz, to be published in IEEE Trans. On Applied Superconductivity.

Summary

- Higher field approach to fusion (8 T) is a winner
- Some of the physics advantages of Fire/Ignitor accommodated
- Aries-RS and AT would unify with easier physics
- The basic SC magnet technology is rapidly improving and the US should invest more aggressively to develop this technology for fusion applications
- 16T coils can be developed for DEMO on time
- **Benefits** to other MFE approaches