Engineering Overview International Fusion Materials Irradiation Facility

J. Rathke Advanced Energy Systems, Inc.

FESAC Subcommittee Review January 14, 2003 San Diego, CA

Acknowledgements:

The presenter wishes to thank all members of the IFMIF team for their contribution to the material presented here

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

Outline

International Fusion Materials Irradiation Facility

- Background of IFMIF Program
- Conceptual Design Activity
 - Design Overview
 - Cost and Schedule Overview
- Reduced Cost Design
 - Design Overview
 - Cost and Schedule Overview
- Current Program Status
- Technology & Achievements Overview
 - Test Facilities
 - Target System
 - Accelerator System
- Overview of LEDA Facility at Los Alamos

• Summary

Nystems,

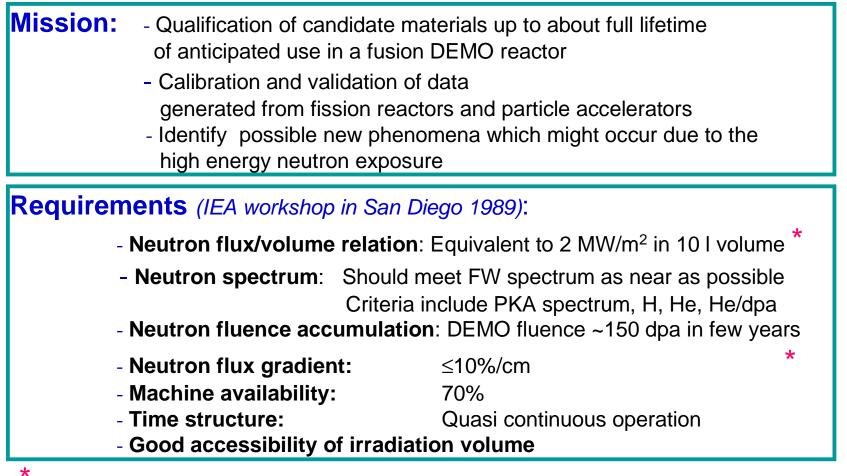
A dvanced

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

Why a Dedicated Fusion Neutron Source? International Fusion Materials Irradiation Facility

- There is presently no neutron source that combines:
 - -fusion similar spectrum
 - -high fluence for accelerated testing
 - -sufficiently large test volume
- ITER testing is limited because fluence accumulation is restricted to <5 dpa and the mode of operation is very different from DEMO (e.g. low temperature, strongly pulsed operation) However it is a valuable test bed for integral testing of components like TBM's in the low fluence regime
- Reliable materials development for DEMO reactors (~80-150 dpa) cannot be done in fission reactors, spallation sources, or nextstep fusion devices

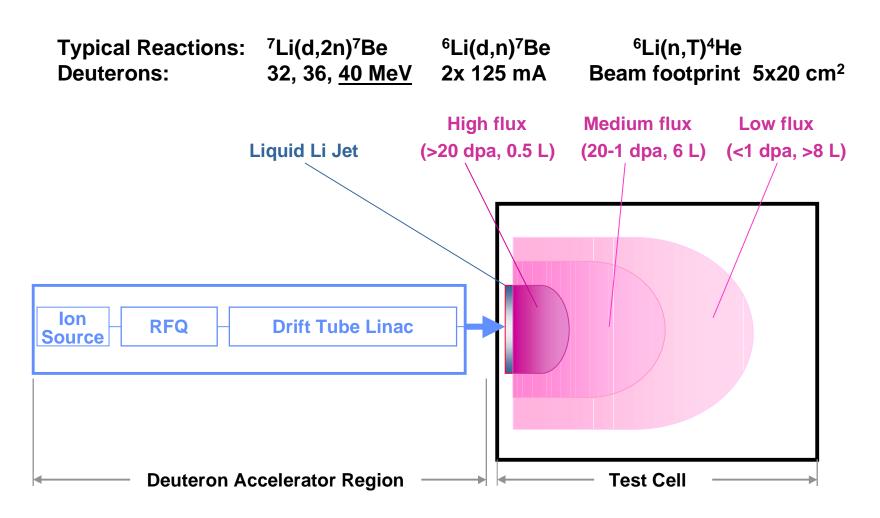
History (and Future?) of IFMIF International Fusion Materials Irradiation Facility


1975-1985	FMIT
1985-1993	International Studies of Various Neutron Source
	Options
1988	ESNIT - Japan
1989	IEA Workshop - San Diego Sets Requirements
1992	International Decision for Accelerator Based D-Li Neutron Source (Karlsruhe)
1993	Moscow Workshop on High Flux Source Options Confirms D- Li decision
1994-1996	IFMIF Conceptual Design Activity under IEA US Funding for IFMFI CDA ~\$5 Million (ORNL, LANL, ANL, Grumman Team)
	US Funding After IFMFI CDA ~0.5-1.0 FTE/yr
1997-1998	IFMIF Conceptual Design Evaluation
1999	IFMIF Reduced Cost Design (Japanese Led Effort)
2000-2002	IFMIF Key Element Technology Phase (KEP)
2003	IFMIF Transition Phase
2004-2008	IFMIF EVEDA (Planning based on \$72M over 5 years)

_

Intense Fusion Neutron Source

International Fusion Materials Irradiation Facility

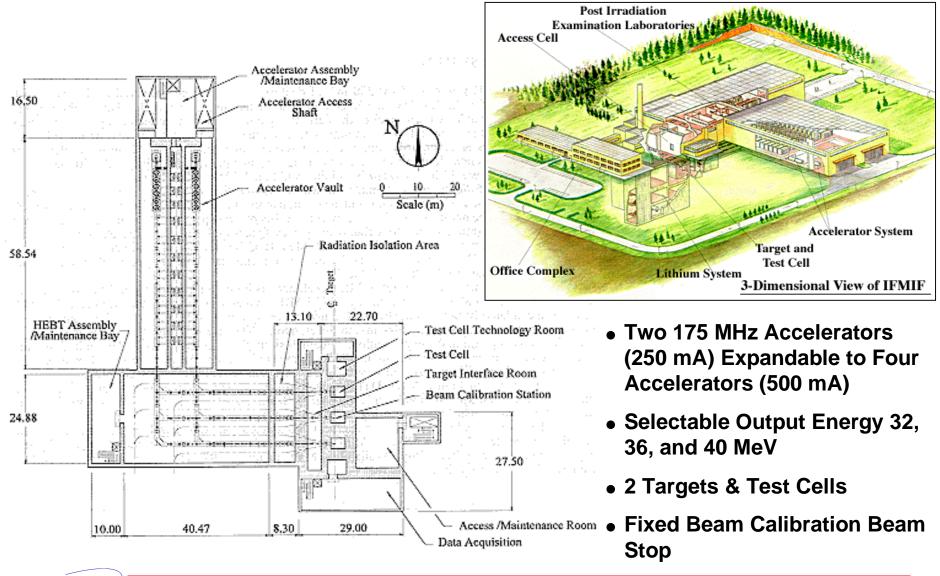


requires use of qualified miniaturized specimens

Anatomy of IFMIF

International Fusion Materials Irradiation Facility

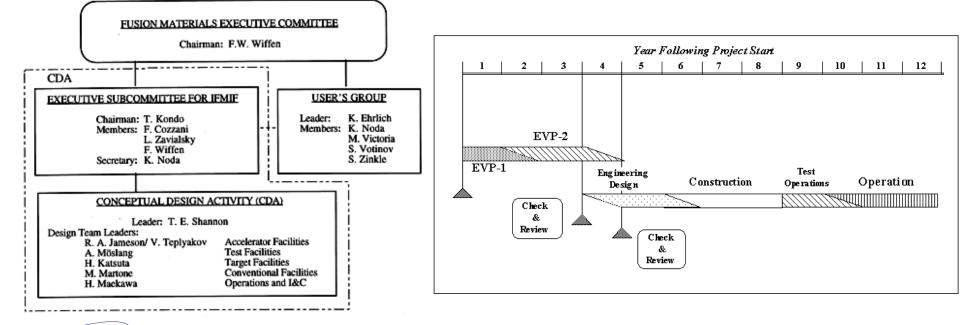
J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA


Energy Systems,

Advanced

A. Moslang - 19th IAEA Fusion Energy Conference, Lyon, France, October, 2002

IFMIF - CDA Design



CDA Organization, Cost and Schedule

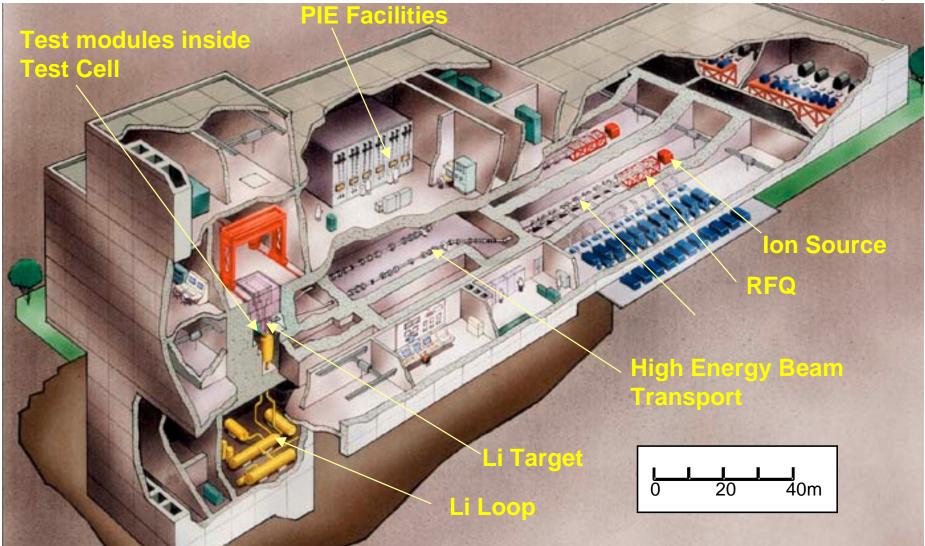
International Fusion Materials Irradiation Facility

WBS	Subsystem	Estimated Cost (MICF)	AFI (MICF)	Total Estimated Cost (MICF)
1.0	Project Management	52.0	0.0	52.0
2.0	Test Facility	89.1	17.5	106.
3.0	Target Facility	92.8	22.4	115.2
4.0	Accelerator Facility	339.0	70.0	409.0
5.0	Conventional Facilities	75.7	14.7	90.4
6.0	Central Control	21.9	2.1	24.0
	TOTALS	670.5	126.7	797.2
			18.9%	

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

Energy Systems, Inc.

Advanced


IFMIF Reduced Cost Design

- 28th FPCC meeting January 1999 requested a review of IFMIF for potential cost reductions
- Due to reduced effort in US and Europe, Japanese colleagues took the lead in this effort
 - Japan took lead role in Design Integration
- Result:
 - Design with reduced capability/expandability
 - Single target/test cell
 - No fixed beam calibration station
 - No upgrade path to 500 mA
 - Staged approach to construction
 - Phase 1 One accelerator operating at 50 mA on target
 - Phase 2 One accelerator operating at 125 mA on target
 - Phase 3 Two accelerators operating at 250 mA on target

IFMIF Reduced Cost Design

International Fusion Materials Irradiation Facility

Advanced

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

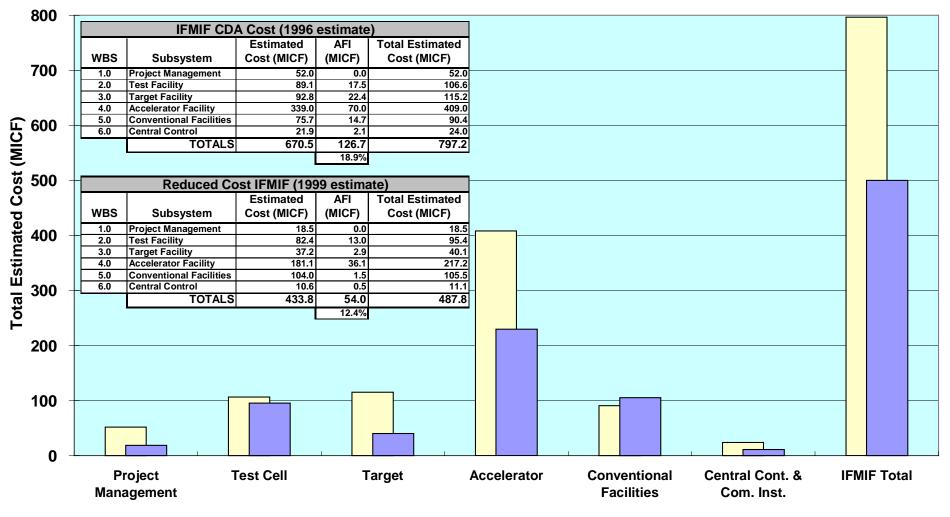
A. Moslang - 19th IAEA Fusion Energy Conference, Lyon, France, October, 2002 10

Reduced Cost IFMIF

International Fusion Materials Irradiation Facility

Reduced Cost IFMIF (1999 estimate)								
WBS	Subsystem	Estimated Cost (MICF)	AFI (MICF)	Total Estimated Cost (MICF)	Estimate in			
1.0	Project Management	18.5	0.0	18.5	1996\$			
2.0	Test Facility	82.4	13.0	95.4				
3.0	Target Facility	37.2	2.9	40.1				
4.0	Accelerator Facility	181.1	36.1	217.2				
5.0	Conventional Facilities	104.0	1.5	105.5				
6.0	Central Control	10.6	0.5	11.1				
	TOTALS	433.8	54.0	487.8				
			12.4%					

- Estimate prepared in Japan and presented to US, EU, and RF at Design Integration Meeting, Lausanne, 1999.
- Estimate reflects assumptions for project implementation in Japan
- International group has not yet officially revised CDA estimates
- Goal for 2003 Rationalize the Cost Estimate & Design Baseline


Advanced

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

IFMIF Cost Comparison

International Fusion Materials Irradiation Facility

CDA Cost ('96) Reduced Cost ('99)

IFMIF Operating Costs

- Detailed estimate prepared for CDA (2 accelerator option) No update for the Reduced Cost IFMIF
- RC IFMIF may be somewhat less due to reduced equipment requiring maintenance Power usage the same
- Electric Power cost drives number Assumes 43.4 MW Full Load. Rates: .066 ICF/kWh min., .131 ICF/kWh max.
- Staff 183 Total, 60 day shift, 41 shifts 2, 3 & 4

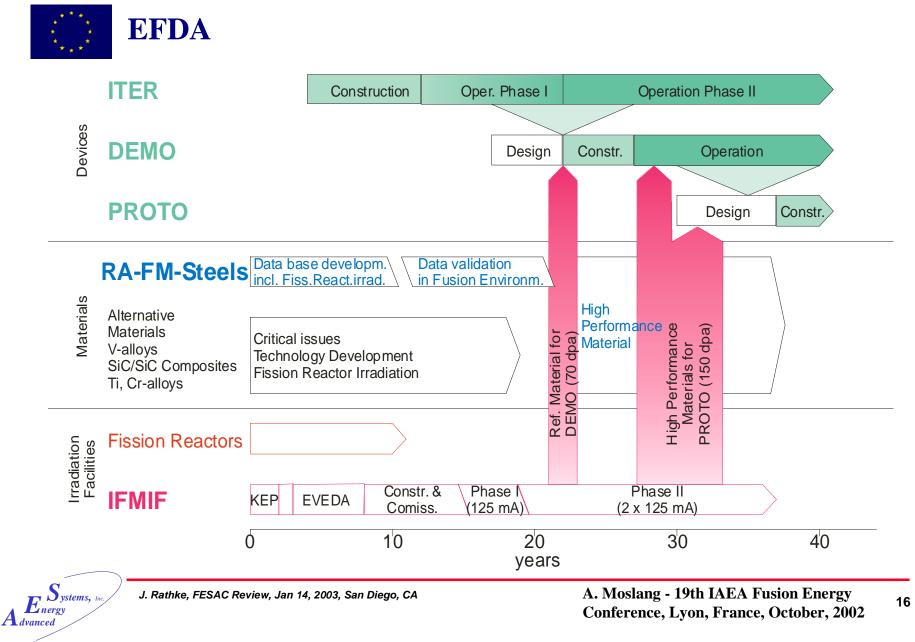
IFMIF CDA Operating Cost Estimate 1996 (MICF/yr)									
Category	Estimate	AFI	Total	Maximum	Minimum				
Personnel	23.0	2.3	25.3	25.3	25.3				
Electric Power	31.6		31.6	42.1	20.3				
Utilities	0.7	0.2	0.9	0.9	0.9				
Maintenance	8.0		8.0	8.0	8.0				
Waste Disposal	0.5	0.1	0.6	0.6	0.6				
Miscellaneous	1.0		1.0	1.0	1.0				
		TOTALS	67.4	77.9	56.1				

Design/Program Status

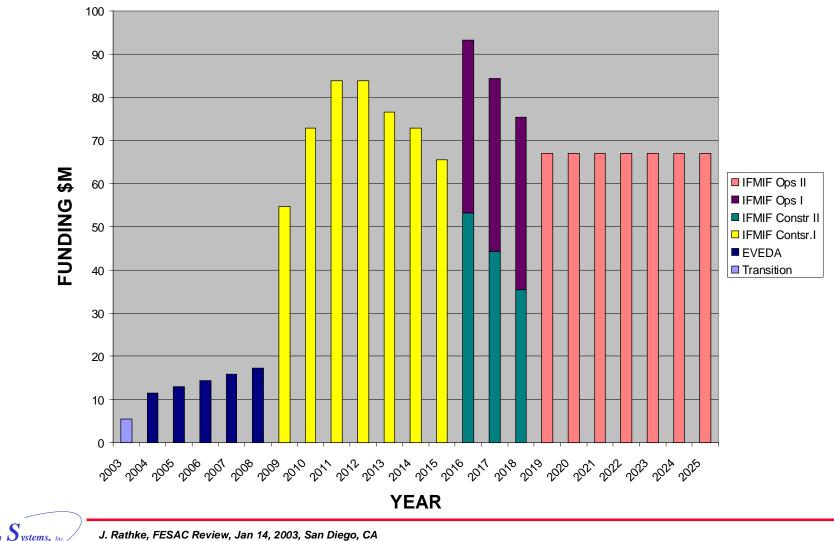
- Major elements of the Reduced Cost Design have been adopted
 - Limited to 2 accelerators, single target, no beam calibration station
 - Simplified beam transport system
- Staged approach has been reduced to 2 stages
 - Stage 1 One accelerator operation at 125 mA
 - Stage 2 Two accelerator operation at 250 mA
- Agreement on Fast Track Schedule between funded parties (EU and JA)
 - 2003 Transition Year Organize Central Team
 - 2004-2008 Engineering Validation and Engineering Design Activity, Site Selection
 - 2009 Construction Start

IFMIF 'Fast Track' Schedule

International Fusion Materials Irradiation Facility



IFMIF-Plan	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
KEP																					
Transition year																					
New IEA-agreement																					
EVEDA																					
Procurement packages																					
Reference site																					
IFMIF agreement for constr.																					
Licensing for operation																					
Construction and commiss.																					
Testing accel. module																					
Operaton Phase 1 (125 mA)																					
2nd accelerator Phase																					
Operation phase 2 (250 mA)								1													


J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

IFMIF and Fusion Road Map

Funding Profile Total Program International Fusion Materials Irradiation Facility

Profile reflects costs as shown previously except Construction & Commissioning is at \$643 M - This is a guess at where the 2003 cost rationalization will arrive

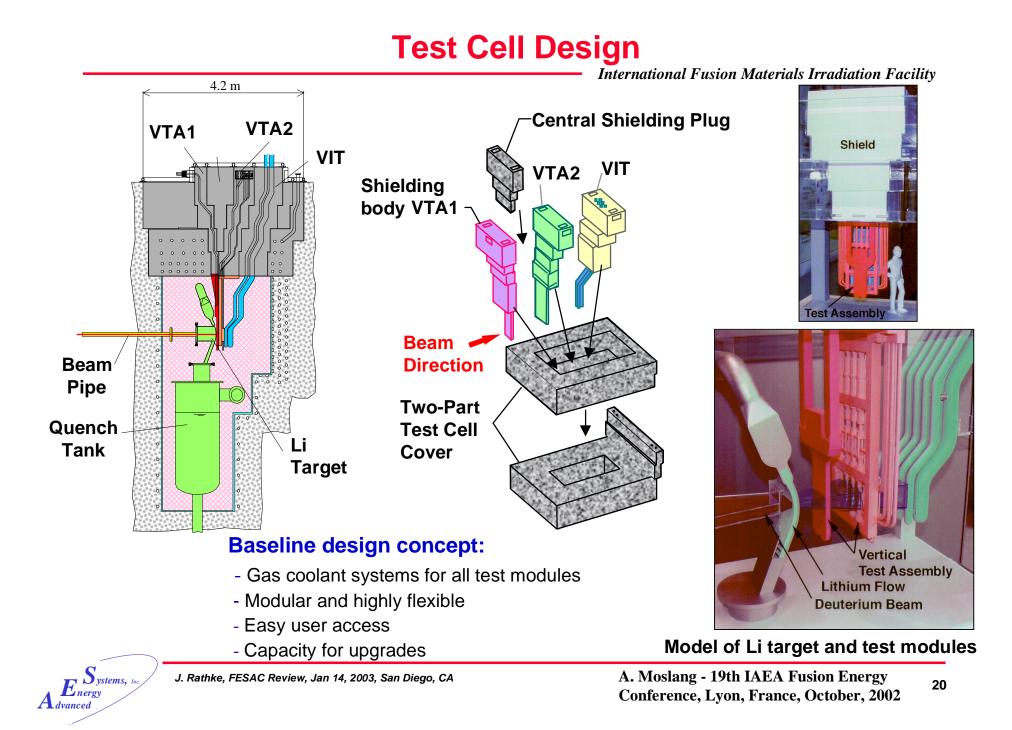
Energy E

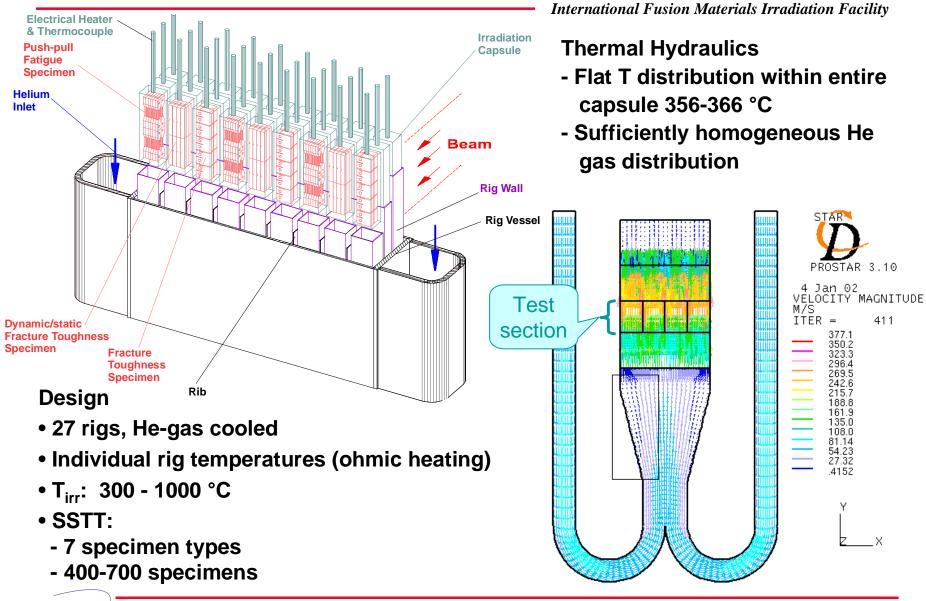
Advanced

Commitment of Parties

- Europe (M. Gasparotto, 11/02)
 - Funding for 2003 Transition in-place at 3 MEuro
 - Plan for EVEDA Phase (included in 6th Framework)

IFMIF - EVEDA - Costs (MEuro)								
Tasks	R&D	Design	Sub-total	EU Contribution				
Design Integration	0	5	5	50%				
Accelerator	27	5	32	30-35%				
Li-Target	17	4	21	10-15%				
Test Facilities	9	5	14	80-90%				
TOTAL	53	19	72	35-40%				


- Japan (H. Nakamura, 1/03)
 - Work conducted jointly by JAERI and University/NIFS
 - Funding for 2003 Transition maintains KEP level (~10 FTE)
 - Necessary steps are being followed nationally supposing start of EVEDA Phase
 - IFMIF schedule beyond 2003 will be discussed in upcoming IFMIF meeting (March 2003, Tokyo)


International Fusion Materials Irradiation Facility

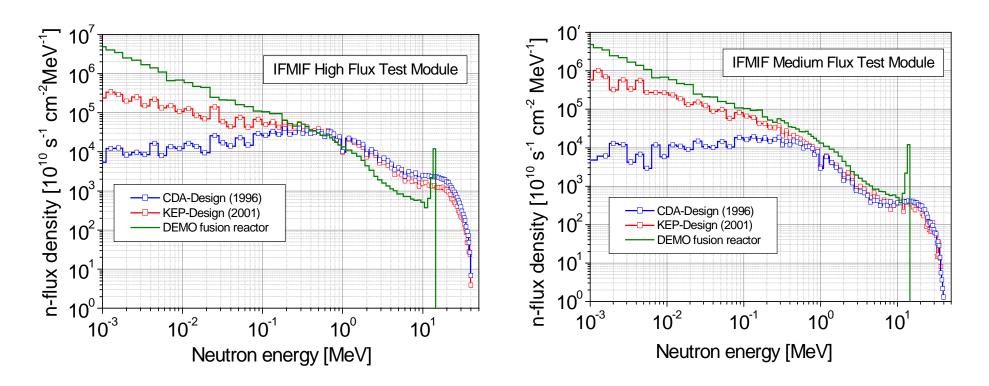
Technology Assessment

Test Cell Achievements

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

vstems, I

E nergy


Advanced

A. Moslang - 19th IAEA Fusion Energy **Conference, Lyon, France, October, 2002**

IFMIF Neutronics - Achievements

International Fusion Materials Irradiation Facility

Improvement of neutron spectra with moderator/reflector

- Moderator/reflector: \rightarrow Substantial improvements in neutron spectrum adaption \rightarrow Irradiation volume increase by ~20%

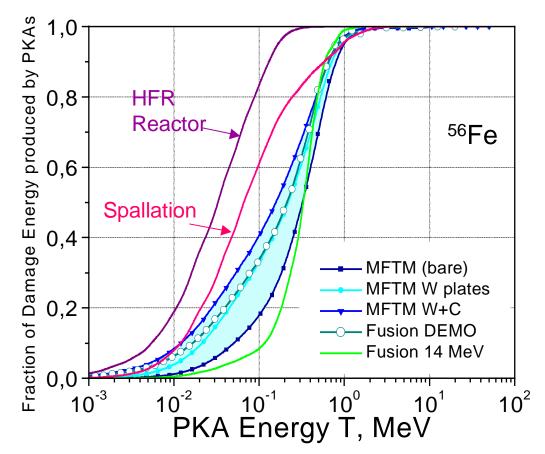
J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

dvanced

IFMIF Neutronics - Achievements

International Fusion Materials Irradiation Facility

Irradiation Parameter	DEMO	ITER	IFMIF HFTM	IFMIF MFTM
Total n-flux, (n/(cm ² s)	1.3·10 ¹⁵	4·10 ¹⁴	(4÷10)·10 ¹⁴	(2÷6)·10 ¹⁴
H production, (appm/fpy)	1200	500	1000÷1500	300÷500
He production, (appm/fpy)	300	120	250÷600	70÷120
Displacement damage production, (dpa/fpy)	30	12	20÷55	7÷10
H per dpa, (appm/dpa)	40	45	40÷50	30÷50
He per dpa, (appm/dpa)	10	11	10÷12	8÷14


- Correct scaling of He, H and dpa production

- Accelerated irradiation in limited volume

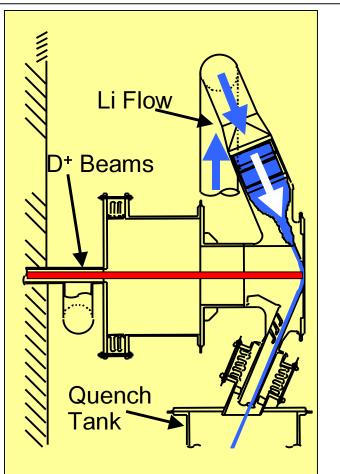
International Fusion Materials Irradiation Facility

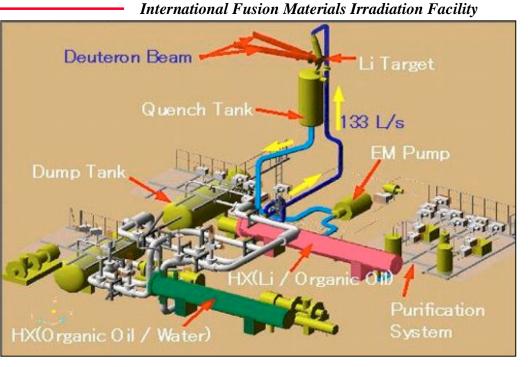
Sensitivity of neutron spectrum to recoil energy distribution

IFMIF (hatched area) meets perfectly the conditions of DEMO-reactor blankets

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

vstems,


Energy


Advanced

Lithium Target System

Function;

- Obtain stable and high speed liquid Li flow under 10MW Deuterium beam.

Major Specifications;

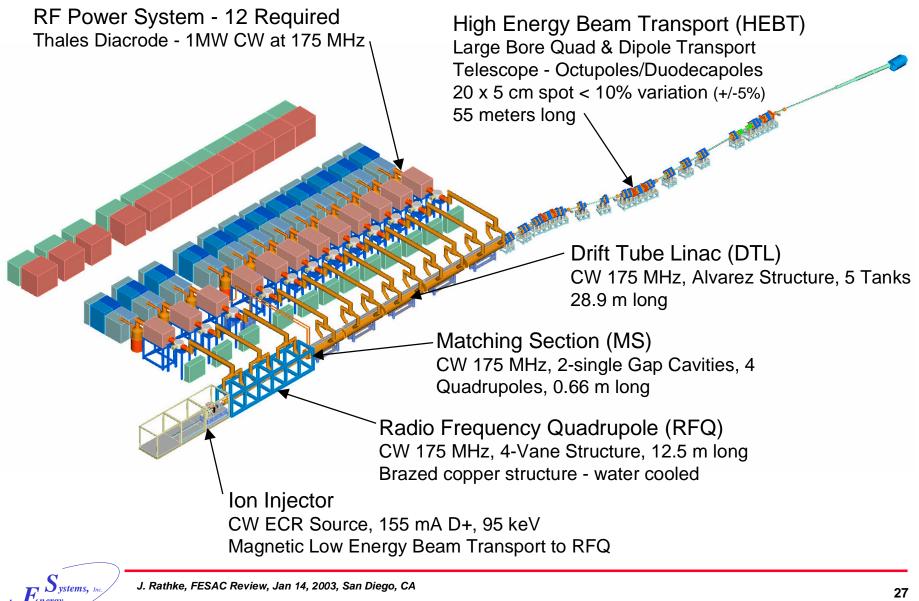
- Heat flux by beam : 1 GW/m^2
- Li flow : 15(range10 20) m/s
- Width/Thickness of Li : 26/2.5 cm
- Inlet, Outlet, Peak Li temp. : 250, 300, 450 $^{\circ}\mathrm{C}$
- Tritium generation rate : 7g/year
- Impurity contents :10 wppm (C, N, O: each)

Advanced Systems, Inc.

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

Target System Achievements International Fusion Materials Irradiation Facility

		<u>International Fusion Materials Irradiation Facility</u>
Task Area	Achievements	
Li Jet Flow stability	Water jet experiment has validated stable high speed flow (20m/s). Set-up for study of effect of "stair" of back plate on stability is prepared. Li loop experiment is started and 14 m/s Li flow is achieved.	2 m
Impurity & corrosion	Characterization of nitrogen gettering materials has been done. Evaluation of impurity monitors and traps have been done. Corrosion loop is completed.	
Safety analysis	Transient characteristics of Li loop at beam trip has been clarified. In safety analysis, target safety is fulfilled. System failure probability estimated.	Li Loop in Russia
Remote handling	Remote handling of two options of back wall (welded type and "bayonet" type) has been evaluated.	Impurity control and corrosion testing
	22 TABLE UL FIB UL FIB SETTI N3 OF LASER TABLE (P. PE J. O. N7)	HILFLANE VASE ASSEMBLY FOR CUTTI NESTED INS
		Laser Table for welding/cutting Back Wall

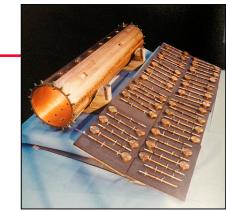

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

Energy Systems, In

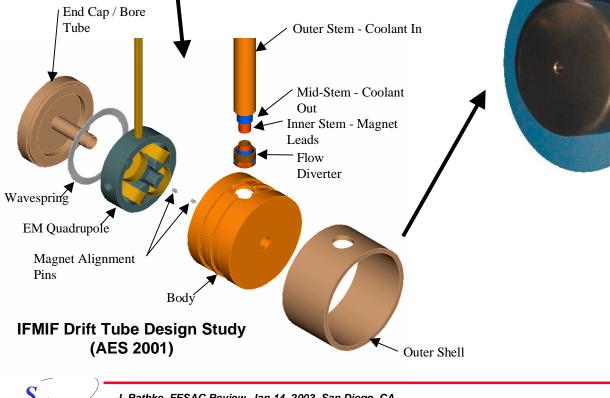
Advanced


H. Nakamura, January, 2003 26

IFMIF Accelerator System - Baseline



IFMIF Accelerator System - Achievements


International Fusion Materials Irradiation Facility

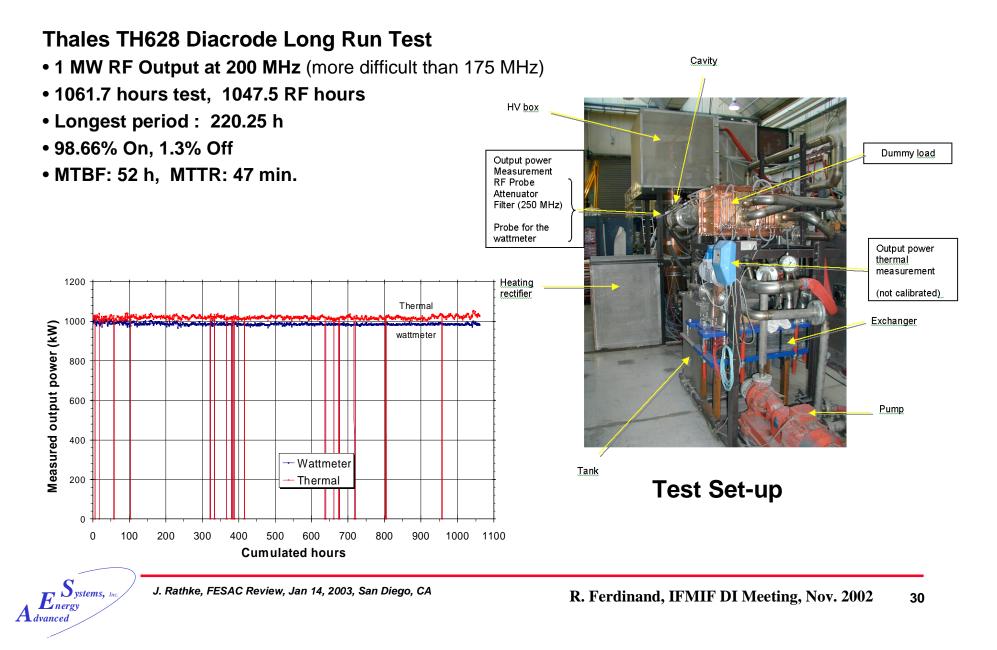
Advanced

Continuous Wave Deuterium Demonstrator Drift Tube Linac Tank & Drift Tubes (AES 1992)

DTL Achievements

IPHI DTL Prototype (Saclay 1997 - Present)

International Fusion Materials Irradiation Facility



J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

RF Power Achievements

IFMIF Accelerator Technology

- Ion Injector 140 mA, D+, CW beam matched to RFQ at ~100 keV
 - Comprises ECR ion source, extraction grids, low energy beam transport
 - US, EU, and JA have test stands (LEDA in US is basis for Saclay design)
 - Saclay has demonstrated ~98% availability at high current for long runs
 - Saclay has demonstrated D+ extraction at IFMIF current levels (pulsed for radiation)
- Radio Frequency Quadrupole (RFQ) 125 mA CW beam at 5 MeV
 - ~12.5 meter structure, 1.6 MW RF Power (3 Supplies), transmission 98.3%
 - LEDA RFQ (350 MHz CW, 6.7 MeV, 100 mA, H⁺) has operated for 100's of hours and demonstrated virtually all engineering parameters; benchmark for physics
 - Saclay currently fabricating 5 MeV, CW proton RFQ
- Matching Section 2 single gap cavities plus 4 quadrupole magnets
 - Matches beam from RFQ to DTL, minimizes losses. No technology issues
- Drift Tube Linac (DTL) 125 mA CW to 40 MeV
 - ~29 meters in 5 separate tanks. Requires 9 RF power supplies
 - Design basis from CW, 80 mA D⁻ DTL designed for the SDI program (Grumman-AES)
 - Prototype CW, H⁺ DTL Fabricated and undergoing test by Saclay
- RF Power 1 MW output at 175 MHz 9 systems required
 - Thales TH628 Diacrode long run test successful

Low Energy Demonstration Accelerator at Los Alamos

International Fusion Materials Irradiation Facility

The LEDA facility at Los Alamos is the premiere CW ion accelerator facility in the world. With a CW, 100 mA H+ injector and 6.7 MeV RFQ Accelerator it is one of the most powerful linacs in the world. A great deal of the design basis for the IFMIF ties directly to work at LEDA.

Unique Features and Capabilities

- A 100-mA capable proton accelerator (at 6.7-MeV,cw)
- Well-shielded 150-m long beam tunnel, with personnel access control
- Six 1-MW RF power generators
- 13 MVA of input ac power (easily expandable to 25 MW capable of supporting a 100 MeV proton beam at 100 mA)
- 15--20 MW of cooling capability
- 12 separate cooling systems (including 50°F chilled water)
- High-power experimental and test areas
- Equipped control room, instrumentation area, power supplies
- Integral machine shop, storage areas, cranes, high-bay, small labs, >30 office spaces, meeting rooms, & computer vault.
- \$170M has been invested in the LEDA facility

<u>Current Status</u> - Cold Storage

Energy Systems, I

Advanced

- Scheduled & Funded for Dismantling starting in 2003

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA

LEDA and IFMIF International Fusion Materials Irradiation Facility • P $\langle \mathbf{A} \rangle$ ๎₿ C O E **FG H** € ĸ L (\mathbf{N}) R IĒ 5-C2 1 1 Picili IIII E **LEDA** П 2 3 Þ **(5.1)** ٩ KG ¶" F -(5) - Цр 20 im j 10 2) (4)(5) (7) (8)(9) (1)(12)(14)3) (6) (13)000 \boxtimes R106 a tala 00000000000 יש"ע"ע"ע" **IFMIF** İ \mathbf{n} E Ξ. ╡┿╺┿╺┿╺┿╺┿╺┿╸┿╸┿ ┺┍┺┍┺┍┺┍┺┍┺┍┺╸╋ ╝╴┙╴┙ 00.001 80 \odot R. Sheffield, Jan 03 J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA 33

Advanced Systems, Inc.

• Los Alamos

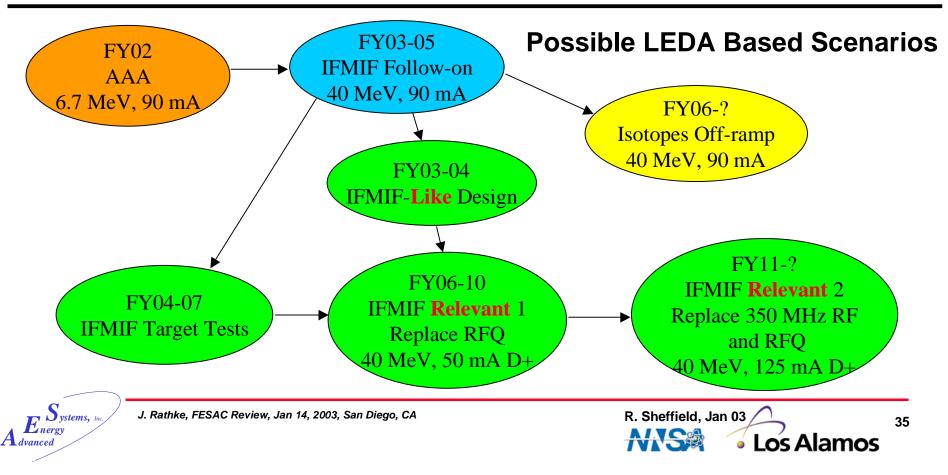
LEDA Facility

Water Systems

International Fusion Materials Irradiation Facility

RF Power Gallery

J. Rathke, FESAC Review, Jan 14, 2003, San Diego, CA


Roles for LEDA?

International Fusion Materials Irradiation Facility

Irradiation Volumes for 1 to > 20 dpa/yr using ⁷Li target with LEDA

- 0.5 lit for 40 mA (use installed 350 MHz but new RFQ) D⁺ current at 40 MeV on ⁷Li.
- 2 lit for 125 mA (requires 175 MHz RFQ) deuteron current at 40 MeV on ⁷Li.
- Reference IFMIF case -

- 6 lit for 250 mA deuteron current at 40 MeV on ⁷Li.

Summary

- IFMIF Conceptual Design is well developed
- No serious technology issues
 - Ready to proceed to prototyping and engineering design
- Europe is very focussed and ready to proceed to EVEDA (Fast Track)
- Japan is in process of "transition" to EVEDA phase, also appear serious about proceeding promptly
- It seems clear that EVEDA cannot proceed without significant US involvement
 - US maintains excellent capability in accelerator technology could re-assume leadership in this area
 - Accelerator (R. Jameson) and Design Integration (T. Shannon) continue to have US group leaders
 - LEDA facility at Los Alamos available to contribute on many levels
- IFMIF is also subject to decisions on ITER

