

The Promise and Status of Compact Stellarators

Hutch Neilson

Princeton Plasma Physics Laboratory

Fusion Power Associates Symposium Gaithersburg, MD December 13, 2004

Compact Stellarators

Promise

- Solve critical problems for MFE.
- Improve on previous stellarator designs.
- Advance fusion science.

Status

- Physics basis for compact stellarator experiments.
- Design.
- Construction of NCSX.

Compact Stellarator Motivation

NCSX

Stellarators solve critical problems for magnetic fusion.

- Steady state without current drive.
- Stable without feedback control or rotation drive. No disruptions.

Compact Stellarators (CS) improve on previous designs.

- Magnetic quasi-symmetry:
 - good confinement.
 - link to tokamak physics.
- Lower aspect ratio.

3D geometry produces benefits and costs. We need to quantify both.

3-Period NCSX Plasma and Coil Design

Quasi-Axisymmetric: Very Low Effective Ripple

- In NCSX:
 - $-\epsilon_{eff} \sim 1.4\%$ at edge, $\sim 0.1\%$ in core
- Predicted ripple transport is negligible.
 - neo. transport $\propto \epsilon_{eff}^{3/2}$ in $1/\nu$ regime.
 - Confinement improves with lower ϵ_{eff} in experiments.
- Gives low flow-damping.
 - allows manipulation of flows for flow-shear stabilization, control of E_r
- Allows balanced-NBI with acceptable losses (24% at 1.2T).

Stellarator Research Advances Fusion Science

NCSX

Understanding 3D plasma physics important to all of MFE science

- Rotational transform sources (int., ext.): effect on stability, disruptions?
- 3D plasma shaping: stabilize without conducting walls or feedback?
- Magnetic quasi-symmetry: tokamak-like fundamental transport properties?
- Effects of 3-D fast ion resonant modes & Alfvénic modes in 3-D?
- 3D divertors: effects on boundary plasma, plasma-material interactions?

Answering critical fusion science questions, e.g.

- How does magnetic field structure impact plasma confinement?
 - plasma shaping? internal structure? self-generated currents?
- How much external control vs. self-organization will a fusion plasma require?

Large Helical Device (S/C magnets - Japan) $\beta \sim 4\%$. $T_e \approx 10 \text{ kev}, T_i \approx 10 \text{ keV}.$ enhanced confinement. 2-minute pulses.

Stellarators Are Making Excellent Progress

Wendelstein 7-AS (Germany)

β ~ 3.5%.

enhanced confinement. density control & enhanced performance w/island divertor.

Helically Symmetric Experiment (U. Wisc.)

• Successful test of quasi-symmetry.

Wendelstein 7-X (Germany) Optimized Design - S/C magnets Under construction - Ops. In 2010

W7-AS – a flexible experiment

5 field periods, R = 2 m, minor radius a \leq 0.16 m, B \leq 2.5 T, vacuum rotational transform 0.25 $\leq \iota_{ext} \leq$ 0.6

Flexible coilset: Modular coils produce helical field

F TF coils, to control rotational transform ι

- Not shown:
- -divertor control coils
- –OH Transformer
- -Vertical field coils

W7-AS Completed operation in 2002

$\langle\beta\rangle$ > 3.2% maintained for > 100 τ_{E} in W7-AS

- Peak < β > = 3.5%
- $\langle \beta \rangle$ -peak $\approx \langle \beta \rangle$ -flat-top-avg \Rightarrow very stationary plasmas
- No disruptions
- Duration and β not limited by onset of observable MHD
- High-β maintained as long as heating maintained, up to power handling limit of PFCs.
- β limit may be set by equilibrium degradation.
 ⇒ can avoid by design.

M. Zarnstorff (PPPL) & W7-AS Team.

QPS (ORNL) CD-1 Approved

HSX (U. Wisconsin)

U.S. Stellarator Program Goals: CS Attractiveness, 3D Physics

- International Programs (NIFS, IPP,...)
- Theory & Computation
- ARIES-CS Power Plant Study
 - Test expected CS physics benefits.
 - Advance 3D plasma physics.
 - Support next-step decisions.

NCSX (PPPL-ORNL) Under Construction First Plasma - 2008

CTH (Auburn U.) Ops. in 2005

NCSX Mission: Develop Physics Basis for Compact Stellarators

NCSX

Acquire the physics data needed to assess the attractiveness of compact stellarators; advance understanding of 3D fusion science.

Understand...

- Beta limits and limiting mechanisms.
- Effect of 3D magnetic fields on disruptions
- Reduction of neoclassical transport by QA design.
- Confinement scaling; reduction of anomalous transport.
- Equilibrium islands and neoclassical tearing-mode stabilization.
- Power and particle exhaust compatibility w/good core performance.
- Alfvénic mode stability in reversed shear compact stellarator.

Demonstrate...

• Conditions for high-beta, disruption-free operation.

NCSX Physics Design Target: Attractive Properties

- 3 periods, low R/ $\langle a \rangle$ (4.4).
- Quasi-axisymmetric w/ low ripple.
- Stable at β=4.1% to ballooning, kink, vertical, Mercier modes, w/out conducting walls or feedback.

Hybrid Configuration Combines Externally-Generated Fields with Bootstrap Current

- Assumed moderately broad pressure profile and consistent bootstrap current profile.
- "Reversed shear" iota profile (0.39–0.65).
 - stabilize neoclassical tearing modes.
- ~3/4 of transform (poloidal-B) from external coils.
- ~1/4 of transform from bootstrap current.

Coil Design Satisfies Physics and Engineering Criteria

NCSX

- NCSX design uses 18 modular coils (3 shapes)
 - Also TF, PF, and helical trim coils.
- Free-boundary method was used to optimize coils for target properties.
 - VMEC and PIES 3D equilibrium codes.
- Required properties are realized:
 - Free-boundary equilibrium with the required physics properties (R/ $\langle a \rangle$, QA, stability at β = 4%, iota profile).
 - Engineering feasibility metrics: coil-coil spacing, min. bend radius, tangential NBI access, coil-plasma spacing.
 - Good magnetic surfaces at high β .

NCSX Plasma and Modular Coils

NCSX Coil Design Produces Good Surfaces at High β

- Coil geometry adjusted to "heal" islands (measured with PIES code) while preserving physics and engineering properties.
- Corrections for neoclassical and finite $\chi_{\perp}/\chi_{\parallel}$ effects (not included in PIES calculation) reduce effective island width by factor 2-3.

Also, good surfaces in a range of vacuum configurations.

NCSX Coils: Flexibility to Vary Physics Properties

External iota controlled by plasma shape at fixed profiles.

Also

- Can externally control shear.
- Can increase ripple by ~10x, preserving stability.
- Can lower theoretical β -limit to 1%.
- Can cover wide operating space in β (to at least 6%), I_P, profile shapes.

NCSX Machine Parameters

NCSX

Stellarator

Major radius: 1.4 m

Performance:

Magnetic Field Strength (B)

@ 0.2 s pulse: 2.0 T

@ 1.7 s pulse: 1.2 T

Vac. base pressure: 2×10^{-8} torr

Vessel bakeable to 350 C.

Plasma Heating planned

NBI: 6 MW (tangential)

ICH: 6 MW (high-field launch)

ECH: 3 MW

coils cooled to cryogenic temperatures, vacuum vessel at room temperature. 20

NCSX Engineering is Based on a Robust Concept

22

Winding Forms Make a Continuous Shell

NGGX

- Shell consists of individual modular coil winding forms that are bolted together
- Insulating breaks reduce eddy currents.
- Shell concept also attractive for reactors. –ARIES-CS.

Poloidal break

Modular coil lead

Vacuum Vessel Has Good Access

Nesx

- Interior space maximized for SOL and divertor flexibility, consistent with assembly of coils over vessel.
- Port configuration maximizes diagnostic access.
- Vacuum vessel bakeable to 350C means future PFCs can be simpler, more reliable, take up less space.

- Shell material - - - Inconel 625
- Thickness - - - 0.375 inch
- Time constant - - - 5.3 ms

MCWF and VV Manufacture Have Started!

- Industry teams developed solutions to fabrication challenges through R&D.
 - Geometries, tolerances, materials.
- Fabricated prototypes.
 - Using product data close to final design specs.
 - Gained experience, reduced production risks.
- We have placed contracts for the production components
 - VV: Major Tool & Machine, Inc., Indianapolis, IN
 - MCWF: Energy Industries of Ohio, Inc., Cleveland, OH, with:
 - C.A. Lawton Co. (pattern)
 - Metaltek International (casting)
 - Major Tool & Machine (machining)

Preparing to Wind the Modular Coils

- Manufacturing facility is operating.
- Process steps have been developed by R&D.
 - Conductor placement on 3D surface.
 - Conductor deformation during winding.
 - Tooling & fixture optimization.
 - Epoxy impregnation.
- Twisted racetrack will provide integrated demonstration.
- All coils will be cryogenically and electrically tested.

NCSX is on Schedule

NCSX Will Use Existing Fusion Program Infrastructure to Reduce Costs

Research Preparations Are Under Way

- Developing requirements for magnetic sensors, first wall design, diagnostics.
- Developing analytical tools.
- Collaborating on stellarator experiments.
- Planning the experimental program.
- Program Advisory Committee meets annually.
- Research forum in late 2006.

NCSX research will be a national and international collaboration led by PPPL-ORNL partnership.

Summary

- Stellarators advance fusion science and provide solutions to magnetic fusion challenges:
 - Steady state, high-beta operation.
 - Understanding of 3D plasma physics for all MFE
- The NCSX is designed around a low-R/(a), high-beta, quasiaxisymmetric stellarator plasma and a flexible coil set.
- Construction of major components has started.
- First Plasma in May, 2008.
- Research to be a national / international collaboration.