

University of California Lawrence Livermore National Laboratory

Naval Research Laboratory

FUSION POWER ASSOCIATES ANNUAL MEETING

BRUCE WARNER DEPUTY ASSOCIATE DIRECTOR, NIF PROGRAMS LAWRENCE LIVERMORE NATIONAL LABORATORY

OCTOBER 11, 2005

P9762

Basic Science and Cosmology

- Fusion Energy
 Future energy source
 Transition to hydrogen economy

RUNDON .

Major elements of the National Ignition Campaign and point design

- Our plan for 2009–2010 concentrates on systems integration and executing a credible ignition campaign
- NIC is a major transition in U.S. program planning

- Developed set of National Ignition Campaign objectives
- Agreed upon scope by participating sites (LLNL, LANL, LLE, SNL, GA)
- Developed self-consistent schedule with high-level milestones
- Preliminary budget allocation
- Developed a Campaign Execution Plan
- Structured organization for campaign execution

Approved by NNSA and is now operational

Major elements of the National Ignition Campaign and point design

We have developed new high performance target designs

NIF Indirect Drive target schematic

Improvements in ignition point designs have reduced NC laser energy estimates from 1.8 MJ to ~1 MJ

The National Ignition Campaign

Improve Performance

- Cocktail hohlraums
- Laser entrance hole shields
- SSD, Polarization smoothing

Improved Operability

• Fill tubes for warm transport

The current 1 MJ designs is comparable to the 1997 design at 1.7 MJ

The National Ignition Campaign

1.8 MJ operation will result in high yield

We have demonstrated target fabrication at the component level

-~1 μm thick glue layer

Radiography quantifies Cu concentration and layer location in NIF beryllium capsules

 X-ray source spectrum, material properties, and film response comrise the madel

• Geometrical corrections give precise interface locations

 Input magnification, x-ray refraction, lens destortion

Angular

averaged

profile

	Layer	Cu dopant	Layer thickness
		σ~0.1xvalue	σ∼0.2 um
>	1	0.00%	40.0 um
	2	0.17%	21.7 um
	3	0.33%	22.0 um
	4	0.16%	12.8 um
	5	0.00%	15.9 um
	6	Plastic	15.0 um

The best layer to date is 1.2- μ m rms (all modes) with the best regions below 1.0- μ m rms

1000 • 24 shadowgraphic views of "x" and "y" 800 Primary bright band X (pixels) 600 **Unwrapped Image** 400 390 **Multiple** 200 secondary 2.5 bright bands 370 0 Radius (pixels) 400 800 0 X (pixels) 2.0 350 10⁰ Inner 0.8-µm rms **Outer 0.3**-µm rms 330 Spectrum (µm²) 1.5 10⁻² 310 1.0 10⁻⁴ 290 100 200 300 0 10⁻⁶ Angle (°) 10¹ 10⁰ 10²

Mode ℓ

Multilayer Au-Ucocktail hohlraums have been fabricated for OMEGA experiments

Developments for NIF scale ignition hohlraums are underway

Recent cocktail hohlraums demonstrate expected soft x-ray flux increase over gold hohlraums

The National Ignition Campaign

J. Schein (This Session)

Future shots will test Tr scaling and measure burnthrough brightness ~ $1/\kappa$ (w SNL, G. Rochau, R. Olson)

*H. Nishimura, T. Endo, H. Shiraga, Y. Kato, and S. Nakai, Appl. Phys. Lett. 62 (12), 1344 (1993). NIF-0805-11272

31EIM/tr

J. Fernandez - Tu07.1

The first LPI experiments on NIF have demonstrated propagation in NIF ignition scale plasmas

The National Ignition Campaign

Propagation improvement consistent with modeling and increase in filamentation threshold with improved beam smoothing (I.e. less power/speckle)

S. Glenzer (10186)

E. Dewald (This Session)

DIN

13 requirements were met by systems fielded on NEL
98% channel reliability in NEL experiments

-0805-11260

NIF Cryogenic Target System

NCTS adapts OMEGA cryo target experience

FY05	FY06	FY07	FY08	FY09	FY10	FY11	
		OMEGA, Z		NIF			
Hohlraum En	ergetics	Specify beam smoothin for Design 1 (D1)	thing Determine cocktail composition		Verify T	, for ignition	
Optimize energy and propagation	getics, laser co on	upling Detern col	nine liner/gas mposition		Optimize coupling		
Ablator Performance			ete Be ablator s on Omega	Specify range of capsules for D1	Select D1 ablator		
Confirm ablate and tuning tec	or performance hniques				Optimize ablator		
Hohlraum Symmetry			rol on pre-NIF facilities		Verify NIF sym. measurement techniques for ignition		
Confirm symm and tuning tec	netry control hniques		C	complete NIF symmetry uning simulations	Tune symmetry for ignition hohlraums		
Shock Timing	9				Validate shock timing methods on NIF	Determine ignition	
Develop shock (Planar, conve	k tuning technic rgent)	ques	V ti	alidate convergent ming on Omega	Onvergent Time Shocks laser pulse sha		
Ignition Imple	osions				Ignition expe	rimental campaigns (ECs)	
Pre-ignition implosions (Be capsules, fill-tube surrogates)					campaign: EC1 Design: D1	EC2 EC3 D1 D2	

Experiments on other facilities will further optimize and validate ignition target designs before 2010

The National Ignition Campaign

	Energetics	Laser Plasma Interactions	Symmetry	Ablator Physics	Shock Timing	Implosions
OMEGA				1		
Z/ZR			 Image: A second s	1		
Trident				1		
LIL						

NIC: All the elements to succeed at ignition are in place

We have a balanced risk strategy to meet the 2010 goal for a credible ignition campaign

NIC: Visions of yesterday become reality of today

Ignition by 2010 Golden Anniversary of the invention of the laser and the ICF concept

Short-pulse OMEGA EP beams can be directed either to OMEGA or new EP target chamber

G5546y

The Z-Petawatt Laser System will provide new capability for radiography and fast ignition research

Z/ZR

- Currently, the terawatt-class
 Z-Beamlet Laser (ZBL) creates
 a backlighting x-ray source in
 the 1-10 keV range on Z
- A petawatt-class enhancement, referred to as the Z-Petawatt (ZPW), is being constructed for:
 - New radiography options (X-ray radiography in the 10-100 keV range; Proton radiography)
 - Fast Ignitor fusion research on Z/ZR
- The 2 kJ/1 ps system will begin operation in 2007

Z-Beamlet Laser

*See Rambo et al (IFSA Poster G31)

Advanced Radiographic Capability is being developed for NIF

NRL "Electra" 5 Hz Krypton Fluoride Amplifier

