Laser Fusion Energy: Progress in HAPL *-and-*Introducing The Fusion Test Facility

John Sethian and Steve Obenschain Plasma Physics Division Naval Research Laboratory Washington, DC

Fusion Power Associated Annual Meeting Washington DC Oct 12, 2005

Our co-authors come from 29 different institutions

HAPL meeting #12, LLNL June 2005

5.

6.

Government Labs 1. NRL 2. 3. LLNL

- SNL
- 4. 5. LANL
- ORNL
- PPPL 6.

Universities 1.

- UCSD
- 2. Wisconsin
- 3. Georgia Tech
 - UCLĂ
- 4. 5. U Rochester, LLE
- 6. UC Santa Barbara
- 7. **UC Berkeley**
- 8. UNC
- 9. **Penn State Electro-optics**

Industry

- **General Atomics** 1.
- 2. Titan/PSD
- 3. Schafer Corp
- 4. SAIC
 - **Commonwealth Tech**
 - Coherent
- 7. Onyx

- DEI 8. 9.
 - **Mission Research Corp**
- 10. Northrup
- Ultramet, Inc 11. 12.
 - Plasma Processes, Inc
- **Optiswitch Technology** 13.
- **Research Scientific Inst** 14

We are developing the science & technologies for laser fusion energy with direct drive targets

We need gains > 100 for energy application.... 2 D computer simulations predict target gains > 160.

We are developing two types of Lasers for IFE. Both have the potential to meet the requirements for target physics, rep-rate, cost and durability.

KrF Laser (Electra-NRL) electron beam pumped gas laser

DPSSL (Mercury-LLNL) Diode pumped solid state laser

- Needed technologies are being developed and demonstrated on large (but subscale) systems.
- Technologies developed must scale to MJ systems

Frequency Converter

The Mercury laser was operated at an average power of 550 W for >105 shots at 1 mm and at 227 W for >104 shots at 0.5 mm

55 J/pulse at 1 μm

22.7 J/pulse at 0.5 μ m

KrF Laser Achievements

Demonstrated very uniform laser beam (Single shot): minimizes hydrodynamic instabilities

Shortest wavelength (248 nm) maximizes absorption & rocket efficiency minimizes risk from Laser Plasma Instabilities (LPI)

Demonstrated 300-710 J/pulse in repetitive operation at 1-5 Hz No degradation in laser output

Developed solid state switch, Basis for efficient, durable, inexpensive pulsed power

Predict <u>Overall</u> efficiency of IFE size system ~ 7% (meets goal) Based on Electra R & D of the individual components

The last major hurdle is foil durability. We are getting closer

Final Optics: Grazing Incidence Aluminum Mirror meets requirements for 1) reflectivity (>99% @ 85°) 2) laser damage threshold (> 5 J/cm²)

stiff, lightweight, cooled, neutron resistant base

Target Fabrication: The technologies for target fabrication are understood and either established or under development

Long term exposure experiments and modeling suggest the tungsten FW should be kept < 2500 °C

		Parameters	# shots	Nothing Happens	Surface Roughens	
lons: RHEPP (SNL)		850 kV N ⁺ 50 nsec 0.067Hz	2000	1400 °C ∆T=1380	1900°C ΔT =1820 saturates 2 μm RMS	3100°C ∆T = 3090 saturates 4 um RMS
X-rays: XAPPER (LLNL)	Kome is Adaptes	90-130 eV 50 nsec 10 Hz	10 ⁶	2500 °C ∆T=1900		
Laser: Dragonfire (UCSD)		1 μm YAG 8 nsec 10 Hz	10 ⁵		1800 ° C (∆T= 1700) RMS vs # shots not yet quantified	
Modeling: Wisconsin,modeling shows cracks (roughening) expected Should stop before they get to the substrated					bected. strate	

Reaction Chamber Modeling:

We identified a "chamber operating" window for long term wall survival, target injection, and plant efficiency

Next Steps to Develop Laser Fusion Energy

- •Full scale Laser Beam Line (25 kJ), plus chamber can address:
 - -Laser
 - -Final optics (laser effects)
 - -Target fabrication (mass production methods), injection, & engagement
 - -Some target physics

•Full scale demo based on 350 MJ Target and 2.5 MJ laser would be expensive, and risky

- -Would like to test target physics on smaller scale
- -Need flexible facility to develop chamber, materials, and components

•Solution: The Fusion Test Facility

- -Smaller, less expensive facility
- -Capitalizes on newest version of NRL direct drive target

The Fusion Test Facility (FTF):

- 1) A lower cost, high rep rate path to fusion ignitionand beyond
- 2) Ability to test fusion materials and componentsfor both IFE and MFE
- 3) Based on Direct Drive with lasers
- 4) Fusion power ~ 150 MW
- 5) Prototypical power plant neutrons (flux and spectrum)

The prescription to the reduce the laser energy and still have sufficient gain for the mission of the FTF

- Reduce pellet mass while increasing implosion velocity (to ≥400 km/sec)
- Increase peak drive irradiance and concomitant ablation pressure (~2x)
- Use advanced pellet designs that are resistant to hydro-instability
- Exploit KrF laser's deep UV light and large bandwidth ($\Delta \omega$)

	Laser	1D Coin	Yield	Fusion Power		See talk by S. Obenschain	
		Gain	IVIJ	(MW@ 5 Hz)		at APS/DPP	
Spike, <i>plus</i>	250	30	7.5	38		meeting for details	
+ 100:1 contrast Main Pulse (tuned for gain) Spike, <i>plus</i> 50:1 contrast Main Pulse (tuned for stability)	460	79	36	181			
	650	90	59	292	"	baseline:" 500 kJ	
	500	56	28	140		aser facility with	
	650	76	49	247			

Calculations from Colombant and A.J. Schmitt

The Fusion Test Facility (Conceptual)

The peak temperature of the FTF first wall should be well below any thermal fatigue limit

Smaller FTF targets (~ 2 mm vs ~ 4 mm) should be easier to fabricate Lower injection velocity (~70 m/sec vs ~ 150 m/sec) helps tracking/injection

Key stresses in the FTF KrF amplifiers are within existing Electra and Nike parameters

The FTF Chamber (conceptual)

There is ample room to place materials and components within the beam lines

The FTF can expose materials, components, and structures to power plant level fluxes (> 10 dpa/yr)... and beyond

The FTF can become operational by 2018

The Fusion Test Facility concept looks attractive

On the path to develop an attractive, conceptually simple approach to fusion energy (direct drive + lasers)

Experimental validation & optimization of Laser IFE target physics.

Develop materials and components for both Laser-Based IFE and MFE