Recent Results from the Levitated Dipole Experiment

M. E. Mauel and the LDX Team FPA Annual Meeting September 28, 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Outline

- What must be learned to establish the dipole fusion concept?
- Our newest results: Low-frequency fluctuations suppressed using density profile control with programmed neutral fueling.
- *Our oldest results:* Achieving and sustaining high beta equilibria by stabilizing kinetic interchange instabilities.

Dipole Fusion Concept

ITER

30 m

400-600 MW DT Fusion

60 m

500 MW DD(He3) Fusion

Kesner, et. al. Nucl. Fus. 2002

Dipole Fusion Concept

- Advanced fusion fuel...
 - D-D (³He) with active triton removal
 - No tritium breeding; simplified fusion technology
- Requires...
 - High plasma beta
 - Good plasma energy confinement
 - Poor particle (*i.e.* triton) confinement
 - High-field, high-temperature superconductors

Albany Cable Project: 48MVA using 350 m BSCCO

Same conductor as used in Kesner, et al. (2002)

Levitated Dipole Experiment

Levitated Upper Catcher & Diagnostic Frame

Laser Alignment Ring

Nb₃Sn 1200 kA · turn

Today's Dipole Experiments

Our Newest Results

- 1. Create long-pulse (10 s) high-beta (20% local) plasma in "**levitated**" magnetic geometry.
- 2. Using transient fueling to alter density profile.
- 3. Observe coherent low-frequency fluctuations that can be altered or suppressed with changing profiles.

Controlling the LDX Discharge: Gas & Multifrequency ECRH

- ECRH: 2.45 & 6.4 GHz;
 Up to 5 kW total power
- Pulsed or continuous
 D₂ fueling
- 2 mV · s represents 3 kA of plasma current; W_p ~ 300 J; β_{peak} ~ 20%

(More later...)

New 4-Channel Interferometer

Low Frequency Fluctuations Modified by Density Gradient

Coherent Fluctuations Suppressed with Flatter Gradient

Our Oldest Results

- 1. Inject 5 kW of multiple-frequency ECRH power to create and sustain long-pulse discharges.
- 2. Program neutral fueling rate to stabilize kinetic interchange instability.
- Observe and study properties of high-beta equilibria generated by anisotropic ~ 150 keV trapped electrons.

Long pulse high beta plasma achieved on our first shot!!!

X-Ray Measurement of Fast Electrons Constrain Equilibrium

Best Fit Equilibrium for $\beta_{peak} > 20\%$ using Multi-Frequency Heating

HEI Must be Suppressed to Reach High Beta

Summary

- Dipole concept offers fusion an alternate technology path: HT_c superconductors; no tritium breeding; simplified fusion materials.
- Requires high beta, good energy confinement, poor triton particle confinement.
- LDX is the world's only device exploring the basic physics for dipole fusion. First results:
 - Steady high beta equilibria with HEI stabilization
 - Fluctuations suppressed with density profile modifications

Thin Supports were a Major Power Loss...

Three high-strength, aluminacoated spokes support dipole during Phase I experiments Supports become "warm" during high-beta plasma operation

Elimination of supports, next step, will further enhance confinement, density, ...

Levitation...

- ✓ All equipment on hand
- Integrated magnet test complete
- Laser detection of floating dipole tested during plasma ops
- RT active control system tested
- "Drop test" of safety catcher underway

