The National Ignition Facility,

The National Ignition Campaign and Beyond

Edward I. Moses

NATIONAL IGNITION FACILITY

Associate Director—NIF Programs

Presentation to: Fusion Power Associates

September 27, 2006

Work performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

UCRL-PRES-225531

 NIF is on schedule and within budget

. Josef

FR 0 0

- Performance of first bundle exceeds ignition requirements
- NIF has completed four Stockpile Stewardship experimental campaigns

NIF-0506-11991r3

20 1 10

NIF-0903-07255-r1_L1 08EiM/Id

Design goals for 1ω energy and power exceeded with high overall beam quality

2.0

2ω and 3ω beamline energies are highest ever achieved

NIF functional requirements and primary criteria have been demonstrated on a single beamline at 300

1.8 MJ NIC ignition point design, energy, power, pulse shape & beam smoothing were achieved simultaneously

The National Ignition Facility

The first LPI experiments on NIF have demonstrated propagation in NIF ignition scale plasmas

3 - 5 keV x-ray images at 3 ns					
Phaseplate, SSD, and Polarization wedges	Phase-plate only (filaments)				

Propagation improvement consistent with modeling and increase in filamentation threshold with improved beam smoothing (i.e. less power/speckle)

S. Glenzer (10186) E. Dewald (This Session)

1 MJ shaping results: Comparison of requested vs measured 3ω pulse shape (N060302-001-999)

NIC ignition mission requires precise adjustment of features in the laser pulse

This level of capability is unique to NIF

- Over the past year we have stood up the National Ignition Campaign
- We now have a unified and focused effort for ignition on NIF including a credible ignition experiment in 2010

A.

8 7 75

2006

Edward I. Moses Director, National Ignition Campaign

Major elements of the National Ignition Campaign

NIF Indirect Drive target point design

	FY04	FY05	FY06	FY07	FY08	FY09	FY10	FY11	FY12
NIF	Operate and maintain facility and utility systems								
		NEL Operations & user experiments 96 beams							
	NIF Activation								
				Pro	ject Compl	ete			
NIC						1 MJ	1.		
						19	Operation 2 beams	s 🔼	
			Diagnostic Inte			gration			
	Cryogenic Target Integration								
				P			EPS Integration		
		Ignition Physics Optimization							
					│ ntegrated I	gnition Exp	eriments		PDD
Routine operations					HED Experiments				
				Basic Science Experiments					

High-energy high-intensity missions define the laser requirements

Conceptual full scale proton fast ignition must satisfy many criteria – design is evolving

High energy petawatts require minor beamline modification

The petawatt beam path in the target bay will be easily switched from the long-pulse beam path

Omega EP will support both FI science (EP chamber) and integrated FI experiments (Omega chamber) – in FY09

>80% in 20 µm

>80% in 40µm

Focusing

NIF-0906-12654r2 25EIM/dj

Is NIF a precursor to an Inertial Fusion Energy plant?

NIF is based on 1960's — 1990's laser technology

These technologies result in a low rep rate, low efficiency laser fusion driver

IFE laser will be based on 1960's — 2020's technology

 These "plug and play" modifications to NIF architecture could increase rep rate by 100,000x and efficiency by 40x

The National Ignition Facility

- Comparison of Yb:S-FAP, Nd:Glass, and Yb:YAG (ceramic) based IFE drive lasers
 - Nd:Glass based system
 - Traceable to NIF beam line
 - Leverages technology base developed for NIF: large optic finishing, beam line bundling, switchyard, and LRUs
 - Yb-S-FAP based system
 - Traceable to Mercury architecture, but using a NIF-like configuration
 - Leverages design of Mercury amplifiers
 - Yb doped optical ceramics
 - Scales like glass but has long storage time
 - Replace NIF glass slabs with Yb:YAG ceramic
 - Requires large scale cryo-cooling

NIF is the backbone of experimental science for Stockpile Stewardship, Inertial Fusion Energy, and studying materials at extreme conditions

- Charles

ER O

38 9 ys

-0705-11147r7 L4

ES

Leveraging the NIF provides a near-term pathway to the demonstration of an IRE beam line

NIF: Visions of yesterday become reality of today

Ignition by 2010 Golden Anniversary of the Invention of the Laser and the ICF Concept

NIF-0506-12026r1

National Ignition Facility Three Years to a New Age for Fusion Energy

NIF-0906-12711 25EIM/dj

