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The HAPL team is developing the science, technology and
architecture needed for a laser fusion power plant...
as if we will be called upon to build one

Government Labs
NRL

LLNL

SNL

LANL

ORNL

=1=1=11

SRNL

INEL

O o

Pellet
factory
Electricity

\H Generatori’//‘fF
i

Spherical pellet

Reaction
chamber

I/’

i /Ql.m\ ~

Final optics

Universities

UCSD

Wisconsin

Georgia Tech

UCLA

U Rochester, LLE

UC Santa Barbara

UC Berkeley

UNC

Penn State Electro-optics

©CoNoORWNE

Industry

General Atomics
L3/PSD

Schafer Corp

SAIC
Commonwealth Tech
Coherent

Oonyx

DEI

ONoOGhWNE

N

Voss Scientific
Northrup

Ultramet, Inc

Plasma Processes, Inc
PLEX Corporation

FTF Corporation
Research Scientific Inst
Optiswitch Technology
ESLI




The HAPL program is developing two lasers:

¢ Diode Pumped Solid State Laser (DPPSL)
¢ Electron beam pumped Krypton Fluoride Laser (KrF)

Both have run at rep rates (1-10 Hz), for > 10,000 shots
Both have the potential for meeting all the requirements for fusion energy

Electra KrF Laser (NRL) = _ rMercury DPPSL Laser (LLNL)

300-700 J @ 248 nm 55 J @ 1051 nm* o oo
120 nsec pulse 15 nsec pulse \3\\4‘0\1 )

1-5Hz 10 Hz 5e©

25 k shots continuous at 2.5 Hz 100 k shots continuous @ 10 Hz

Predict 7% efficiency * Recently demo 73% conversion at 2



Key components of a KrF Laser

Energy + (Kr+ F,) = (KrF)*+F = Kr +F,+ hv (A =248 nm)
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KrF Lasers- summary of progress
Last FPA meeting 10/2005

Demonstrated long term continuous operation at 1-5 Hz
300J, 1Hz @ 10,000 shots
7/00J, 1Hz @ 400 shots
250J, 5Hz @ 7,700 shots (total of four runs)

Limited by cathode failure and/or released gasses

Predict Overall efficiency of IFE system ~ 7% (meets goal)
Based on Electra R & D of the individual components




KrF Lasers- summary of progress

since last FPA meeting

New carbon electron emitter dramatically increases durability
25,000 laser shots at 2.5 Hz (continuous)
Much less evolved gas (> 10 x)

First rep-rate focal profile measurements
Focal profile "recovers"” < 200 msec (i.e. 5 Hz)

"First Light" on Electra Pre-Amplifier (input to main amplifier)
23 J laser output



First rep-rate focal profile measurements:

Experimental set up using "Pseudo ISI"
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New carbon electron emitter significantly

Increases durability

See no change after > 31,000 shots (~25 k continuous)

"Primary" emitter

Ceramic

Honeycomb*

*325 ppi cordierite honeycomb with
gamma-alumina wash coat

Old: velvet primary emitter |

10 k shots...lots of burn marks

New: all carbon primary emitter

31 k shots...no change



First rep-rate focal profile measurements:

Focal profile "recovers" < 200 msec after e-beam fires
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"First Light" on Electra Pre-Amplifier

23 J laser output

Pulsed power:

100,000 shots @ 5 Hz continuous

< 800 psec jitter

Test bed for advanced pulsed power
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We are evaluating several types of final optics

shield . | Final Optic Window

\fi

GIMM (Grazing Incidence Metal Mirror)
¢+ More resistant to neutrons
but...
¢+ Large
¢+ More neutrons on window

Dielectric Mirror
¢+ Highest damage threshold
¢ Less neutrons on window
but...
¢ Less resistant to neutrons

UCSD

PLEX Corp
Fresnel lens Wisconsin

¢+ Must be thin and run hot to anneal neutron damage Penn State 11
¢+ May not work for 248 nm (KrF) LLNL



Target fabrication progress (1 of 2):
¢+ Made foam capsules that meet all specifications

¢+ Produced gas tight overcoats
¢+ Demonstrated smooth Au-Pd layer

foam shells
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Target fabrication progress (2 of 2):
Nearing completion of MPLX Fluidized Bed
Will demonstrate mass production layering of cryo targets

Key features:
Permeation cell to fill targets with D,
Target manipulator
Fluidized bed with IR layering
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General Atomics



We have a concept to "engage" the target

Key principles demonstrated in bench tests
("engage" = tracking the target and steering the laser mirrors)
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We use many experimental / computational tools to develop a

first wall that can resist the "threats" from the target

Thermo-mechanical Helium Retention
(ions & x-rays)
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(UCSD)

X-rays:
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"Magnetic Intervention"” offers a way to keep the

lons off the wall

Cusp magnetic field stops expanding ion shell.
lons never get to wall.

Field is resistively dissipated in wall

lons, at reduced energy and power, escape through cusp poles and belt
lons at reduced power, are absorbed in toroidal dump

o
Coils (4 MA each ~ 1T)--
form cusp magnetic field
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¢ 1979 NRL experiment demonstrated principal of MI.

¢ Recent simulations predict plasma & ion motion
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We have a conceptual design for as system to recover,
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Many students are getting advanced degrees

. UCSD
UCLA
Wisconsin

& Georgia Tech

" U Rochester
U North Carolina 19
Duke
Princeton
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