Plans for Stellarator Research

J.F. Lyon, ORNL

Preparing for the NIF and ITER Era FPA, Oak Ridge Dec. 5, 2007

US Stellarator Program in the Post-ITER Era

- Exploit compact stellarator advantages as steady-state reactors
 - quiescent, steady-state, high- β , disruption-free operation
 - no power input to sustain current or rotation \Rightarrow true ignition
 - no profile control or close fitting walls for stability
 - high density limited only by power density to ease divertor issues
- Goal: operation of a large next-generation compact stellarator (NGCS) in combination with other fusion program elements to establish physics, technology and cost basis for a compact stellarator approach to DEMO
- Key prerequisites needed by 2018-20 that would allow start on an NGCS
 - adequate understanding of main compact stellarator physics issues
 - * low thermal & fast ion losses, confinement scaling, density and β limits, particle & power handling, disruption and ELM avoidance
 - optimization of magnetic configuration (symmetry, ripple, constraints)
 - − simplification of coil and device fabrication and assembly ⇒ only tokamak-like accuracy needed in construction

Community Plan for the Next Decade

- Modify present approach to incorporate
 - physics advances on LHD, W 7-AS, CHS, HSX
 - fabrication advances on NCSX, W 7-X, QPS
 - input from FESAC subcommittees and reviews, ARIES-CS study
- Develop compact stellarator approach to DEMO
 - demonstrate high- β disruption-free operation in NCSX with its tokamak-like geometry and 3-D shaping
 - develop tools for 3-D control of tokamaks
- Strengthen basis for compact stellarators
 - advantages of quasi-symmetry and low effective ripple In HSX
 - explore current-related issues and 3-D reconstruction in CTH
 - improve theory and computation for interpretation and configuration improvement, comparison with tokamaks
- Address feasibility and optimization issues for compact stellarators
 - reduce complexity, cost and required assembly accuracy and explore potential of quasi-poloidal symmetry in QPS

Compact Stellarators as DEMO Candidate

- Compact stellarators \Rightarrow confinement physics as in tokamaks, high- β performance determined by equilibrium, not stability?
- Have crucial advantages as steady-state reactors
 - quiescent, steady-state, high- β , disruption-free operation
 - no power input to sustain current or rotation \Rightarrow true ignition
 - no profile control or close fitting wall
 - high density limited only by power density
 - * faster α slowing-down \Rightarrow reduced α instability drive
 - * less energetic particle fluxes to wall
 - 3-D shaping of plasma edge
 - optimal control of particle fluxes, radiation losses
 - <n_>R/B [10²⁰m⁻²T⁻¹] Features demonstrated in high-*R*/*a*, non-sym. stellarators

Compact Stellarators Exploit Quasi-Symmetry

- Quasi-symmetry ⇒ very small variation of |B| in symmetry direction in straight field line coordinates
 - toroidal, poloidal or helical quasi-symmetry
 - conserved canonical momentum as in axisymmetric system
 - ⇒ good orbit confinement
 - reduced effective field ripple along **B**
 - \Rightarrow reduced neoclassical transport (depends only on |B|)
 - \Rightarrow allows strong rotational transform at lower R/a
 - reduced viscous damping in the symmetry direction
 - \Rightarrow promotes large *E* x *B* flow shear \Rightarrow reduced anom. xport
- Physics commonality with tokamaks
- An area of world leadership for the US program

Quasi-Symmetry Advantages Shown in HSX

ΥZ

- Benefits demonstrated using auxiliary mirror coils to spoil quasi-helical symmetry
- Parallel viscous damping is reduced with quasi-helical symmetry (more rotation/shear)
- Reduced thermo-diffusion & lower χ_e

in electron root $(T_{a} >> T_{i})$

HSX Explores the Potential Benefits of Quasi-Symmetry

HSX research addresses critical issues

- Quasi-symmetry as solution to large neoclassical transport
- Variation of flows/damping & plasma currents
- Dependence of turbulent transport on magnetic structure
- HSX can span the range between quasi-helically-symmetric and non-symmetric configuration

- First experimental test of quasi-symmetry: reduced parallel viscous damping and reduced thermo-diffusion
- Importance of high effective transform; low effective ripple at moderate aspect ratio

Parameters

 $R = 1.2 \text{ m}, \langle a_{p} \rangle = 0.15 \text{ m}, B = 1 \text{ T}$

P_{ECH}: 200 kW, 28 GHz now 200 kW in progress

To date: $T_{\rm e0} \sim 2.3 \text{ keV}$ $\langle n_{\rm e} \rangle = 6 \times 10^{18} \text{ m}^{-3}$

Quasi-Symmetric Concepts Have Different Properties: e.g., Flows & Flow Shearing

NCSX Paves Path for Tokamak-Like CS DEMO

- $\langle R \rangle = 1.42 \text{ m}, \langle a \rangle = 0.32 \text{ m}$
- Magnetic field (pulse length)
 2.0 T (0.2 s), 1.2 T (1.7 s)
- Plasma heating up to 12 MW

Tokamak-like characteristics with capability for high- β disruption-free operation

Develops understanding of

- Beta limits and limiting mechanisms
- Effect of 3-D magnetic fields on disruptions
- Reduction of neoclassical transport by quasi-axisymmetric design
- Confinement scaling; reduction of anomalous transport
- Equilibrium islands and neoclassical tearing-mode stabilization
- Compatible power and particle exhaust
- Alfvénic mode stability in reversed shear

NCSX Configuration Properties

Plasma Cross Sections

Configuration was optimized for target physics properties

- Low *R*/⟨*a*⟩ (4.4)
- Quasi-axisymmetric with low effective ripple
- Stable at β = 4.1% to vertical, kink, ballooning, NTM instabilities
- Reverse shear *q* profile
- 25% of transform from bootstrap current
- Good magnetic surfaces at high β
- Constrained by engineering feasibility

Understanding of 3-D quasi-axisymmetric shaping can also lead to tokamak improvements, e.g., improved stability, disruption avoidance

NCSX Construction Well Under Way

- 16 of 18 coils have been wound; last coil scheduled for May 2008
- 18 TF coils in production, 5 finished; last coil scheduled for Sept. 2008
- Vacuum vessel sectors complete

• Start of assembly preparations

NCSX Program and Schedule

- 1. Stellarator acceptance testing and first plasma (ends fabrication project)
- 2. Magnetic configuration studies: electron-beam mapping studies (2012)
- **3.** Initial experiments (2013) with 3-MW NBI, $B \ge 1.2$ T to study effect of quasi-axisymmetric shaping and effective ripple on confinement
 - resilience to disruptions from MHD instabilities, density limits
 - initial comparisons with calculated MHD stability thresholds
- 4. High-beta experiments (2015) with 6-MW heating, B = 2 T
 - β -limits and limiting mechanisms
 - safe operating area against disruptions
 - local transport properties; impurity transport
 - fast ion transport with ripple; Alfvenic-mode stability
 - initial divertor effectiveness; scrape-off layer characteristics

QPS Extends Compact Stellarator Physics to Very Low *R*/*a* and Quasi-Poloidal Symmetry

- $\langle R \rangle = 0.95$ m, $\langle a \rangle = 0.38$ m
- Magnetic field (pulse length)
 1.0 T (1.5 s), 1.2 T (1 s)
- Plasma heating up to 5 MW

- Reduced growth rates for trapped particle, ITG modes
- Increased flows/shear to suppress turbulence, influence MHD stability
- Low bootstrap current
- Robust equilibrium and healing of magnetic islands
- Allows connection with large W 7-X with R/a = 10.4

QPS R&D and Prototype Coil Address Main Stellarator Fabrication Issues

- Use trim coils and varying coil currents to compensate for inaccuracies in coil fabrication and device assembly
 - avoid need for very tight tolerances and extensive metrology
- Simple internal cooling to avoid complex, expensive external cooling approach
- Accurate winding clamps to avoid extensive metrology and calibrated clamping pressure
- QPS allows a simple vacuum vessel and a simple device assembly process

CTH Studies Equilibrium and Stability in Stellarators with Current

R = 0.75 m, $\langle a_p \rangle = 0.18$ m B = 0.65 T, $I_{OH} \sim 50$ kA vacuum $\iota_a = 0.1 - 0.5$, 5 periods one helical coil; TF & PF coils \Rightarrow large variation possible in ι_{pl}/ι_{ext} 100-kW OH + 15-kW 18-GHz ECH adding soon 30-kW 14-GHz

- Not quasi-symmetric, but uses 3-D shaping, vacuum transform to passively control MHD instabilities
- Validating new V3FIT method of magnetic equilibrium reconstruction in 3-D plasmas
- Detection and control of magnetic islands
- Innovative procedures to determine most accurate model for as-built coils
- These topics central to robust equilibrium and stability control of compact stellarators
- Extended program: ICRF electron heating ⇒ higher pressure MHD studies

International Collaboration

- Allows access to stellarators with capabilities well beyond the scope of the US program
- Although not compact stellarators (*R*/*a* = 6-7 in LHD and 10.4 in W 7-X vs ~2.5 in QPS), they can obtain important information on
 - plasma behavior at high parameters: density (>10²¹ m⁻³), ion and electron temperatures (5-13 keV), $\beta \sim 5\%$ for $50\tau_{\rm E}$
 - energetic-ion stability and transport
 - steady-state operation and β maintenance at high power (3 MW)
 - 3-D power and particle exhaust methods
- They are additional sources of information on
 - the effect of lower effective ripple on neoclassical and anomalous transport
 - density & β limits and mechanisms

B = 3-4 T superconducting coils, V_{plasma} = 30 m³ $a_{pl} = 0.53-0.6$ m $P_{heating} = 15-30$ MW

Theory and Computation Are Critical Innovating and Integrating Elements

US theory develops world-class tools for stellarator interpretation and configuration improvement

- <u>3-D MHD equilibrium</u> (VMEC, PIES, SIESTA) and stability (COBRA, Alfvén mode codes, M3D)
- <u>Transport</u> (DKES, Monte Carlo codes, PENTA)
- Plasma heating (NBI, full wave/ray tracing codes)
- <u>Concept improvement</u> (STELLOPT); <u>reactor optimization</u> (MHHOPT)
- These codes have been used to optimize NCSX & QPS
 - direct optimization from coils to free boundary equilibrium
- Benchmarked with tokamak results
 - integrates common understanding of these devices

~10 Year Compact Stellarator Program

By 2018-20 the stellarator program needs to determine if it is on a path to DEMO and what intermediate facility would be needed

- Physics basis and magnetic configuration optimization firmly established
 -- requires adequate funding of a broadly based, integrated program
 - NCSX to demonstrate high- β disruption-free operation in a compact stellarator configuration with quasi-toroidal (tokamak-like) symmetry
 - HSX to provide fundamental tests of quasi-symmetry and very low effective ripple
 - CTH to study plasma equilibrium and stability in a current-carrying stellarator and develop 3-D reconstruction techniques
 - QPS to extend compact stellarator physics to low *R*/*a* and quasipoloidal symmetry, and demonstrate simpler, cheaper construction
 - Theory to provide world-class tools for stellarator interpretation and configuration improvement as well as benchmarking with tokamak results to integrate common understanding of these devices
- Use of LHD and W 7-X to demonstrate adequate thermal and fast-ion confinement, size scaling, reduction of α-losses, workable steady-state high-power divertor, and simulate burning plasma issues