

Report of Nuclear Component Testing Discussion Group & & National Spherical Torus Program

Martin Peng National Spherical Torus R&D Coordinator ORNL, UT-Battelle LLC

Fusion Power associates Annual Meeting and Symposium

December 4-5, 2007 Oak Ridge, Tennessee

A		Members	Contributions	Organization		
A voluntary		Abdou, Mohamed	Fusion nuclear technology, VNS	UCLA		
Nuclear		Gates, Dave	NSTX plasma experimentation	PPPL		
		Hegna, Chris	Fusion plasma theory	U Wisc		
Component	Leaders' Group	Hill, Dave	Fusion plasma experimentation	LLNL@GA		
Testing		Najmabadi, Farrokh	Fusion power plant conceptual designs	UCSD		
Discussion Group		Navratil, Gerald	Advanced Tokamak, PACs	Columbia U		
•		Parker, Ron	Tokamak, tokamak-CTF, ITER-EDA, SG2 leader	MIT		
was formed to		Peng, Martin	ST, NCT DG Coordinator	ORNL		
prepare input to		Baylor, Larry	ORNL			
		Forest, Cary	ary Plasma science			
FESAC Panel		Hillis, Don	Experimental collaboration	ORNL		
	Subgroup 2	Jarboe, Tom	Innovative confinement concepts, startup	U Wash		
	Enabling	Kotschenreuther, Mike	Turbulence theory, innovative divertors	UT-Austin		
	Burning	Mauel, Mike	Levitated Dipole Experiments, PACs	Columbia U		
	Plasma	Sabbagh, Steve	MHD	Columbia U		
		Sovenic, Carl	Numerical fusion simulation	U Wisc		
		Tynan, George	Plasma science, MFE and IFE	UCSD		
		Whyte, Dennis	Boundary physics, BPO	MIT		
	Subgroup 1	Burgess, Tom	Remote handling	ORNL		
		Cadwallader, Lee	Fusion safety and environmental protection	INL		
		El-Guebaly, Laila	y, Laila Neutronics, safety & environment, SG1 co-leader			
	Fusion	Galambos, John	Systems & costing analysis	ORNL		
	Nuclear	Holder, Jeffrey	Tritium	SRNL		
	Technology	McManamy, Tom	Nuclear core design	ORNL		
		Morley, Neil	Fusion Nuclear Techcnology	UCLA		
		Sawan, Mohamed	Fusion nuclear technology	U Wisc		
		Skinner, Charles	Plasma material interaction	PPPL		
		Snead, Lance	Material science	ORNL		
		Ying, Alice	Fusion nuclear technology, SG1 leader	UCLA		

D

DOE contact: Eckstrand, Steve, OFES

Nuclear Component Testing (NCT) aims to complement ITER mission and fill many DEMO R&D gaps

Mission of the Nuclear Component Testing (NCT) activity:

Create a lowered-risk, reduced-cost approach to a fusion environment beyond the ITER level, and utilize it to test, discover, innovate, and develop the remaining needed physical and engineering sciences knowledge base for Demo.

 Recommended[#] simultaneous component testing capabilities substantially exceed those planned for ITER

Performance metrics	ITER	Capabilities [#]	Demo Goals
Fusion Power (MW)	500	75-150	~2500
Burning plasma energy gain Q	5-10	2.5-3.5	~20
Plasma control: H&CD (MW), fueling	~80	31-43	~125
Burning plasma operation mode	S*-H*	HIHM*	A *
Divertor heat flux (MW/m ²)	~10	≤ 10 **	~10##
Total area of (test) blankets (m ²)	~6	≥10 (test modules)	~670
Continuous operation	~hour	~day→2 weeks	~months
14-MeV neutron flux on module (MW/m ²)	~0.8	1.0-2.0	~3
Total neutron fluence goal (MW-yr/m ²)	~0.3	6	~6-15
Duty factor goal	~1%	30%	50%-70%
Tritium self-sufficiency goal (%)	~0	~100	≥100

- [#] Abdou et al., Fusion Technology **29** (1996) 1; other references.
- Operation modes: S = Standard, H = Hybrid, A = Advanced; HIHM = Hot-Ion H-Mode

** SOL geometric flux expansion considerations only; ## Pacher et al, IAEA FEC 2006, FT/P5-42

Demo issues with large gaps in knowledge base beyond ITER

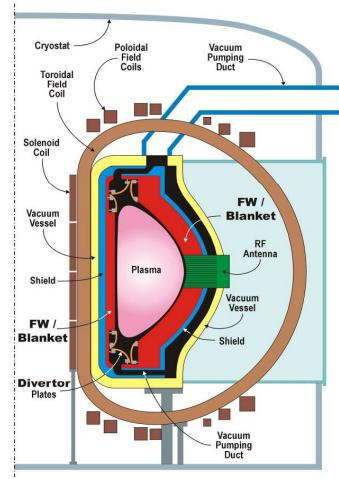
Enabling Burning Plasma

SBP-1: Abnormal events avoidance / mitigation

SBP-2: Startup & steady-state operation

SBP-3: Advanced operating regime

SBP-4: Burning plasma fusion gain


SBP-5: Divertor plasma performance

SBP-6: Burning plasma predictive capability

SBP-7: NB/RF/pellet systems performance

SBP-8: Plasma diagnostics & control

SBP-9: Power plant plasma performance

Tokamak Reactor

Required Fusion Nuclear Technology

FNT-1: S/C & N/C magnets

FNT-2: Tritium self-sufficiency

FNT-3: Tritium retention, accountability, safety, etc.

FNT-4: Materials characterization

FNT-5: Plasma facing surface performance & maintainability

FNT-6: FW/blanket/divertor materials defect control

FNT-7: FW/blanket/divertor availability and lifetime

FNT-8: Full remote handling

FNT-9: Public safety & environmental protection

FNT-10: Electricity generation at high availability

FNT-11: Regulatory permit for Demo plant operation

<u>Nuclear Component Testing R&D gap-filling and need assessment –</u> <u>Questions addressed for the chosen Demo R&D topics</u>

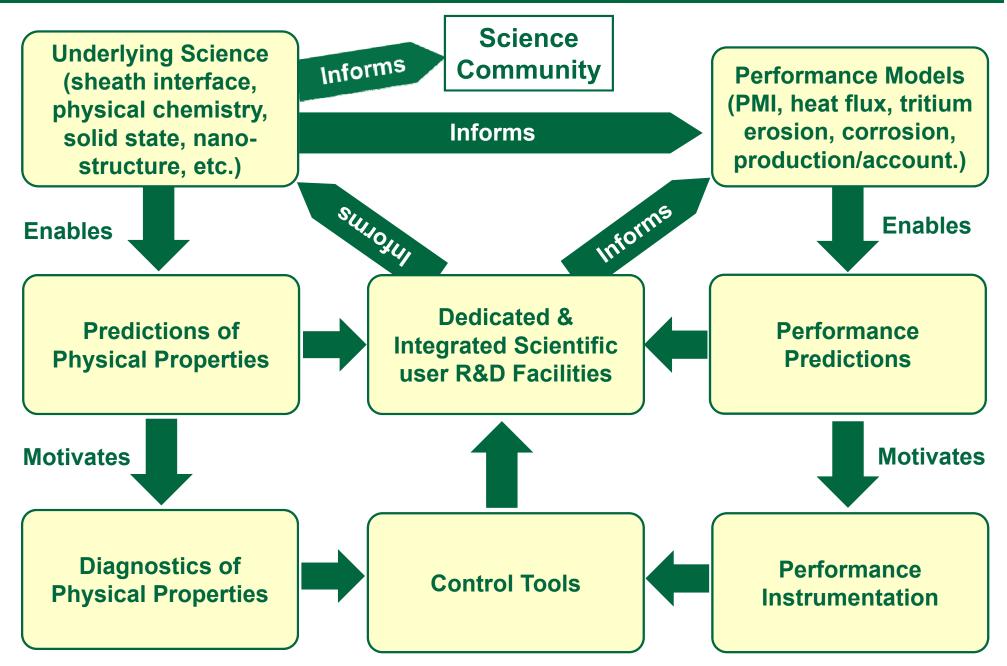
- 1. What is the envisioned Demo goal on this topic?
- 2. What are the physical and engineering sciences knowledge base expected to be established by a successful ITER and IFMIF?
- 3. What are the expected contributions from other planned experiments and technology test facilities?
- 4. What is the gap in R&D on this topic to bridge to Demo design and construction?
- 5. In what key ways can a NCT facility contribute to filling this gap?
- 6. What other approaches can also contribute to filling this gap partially or fully?
- 7. In what ways is a NCT facility unique, or not unique, in filling this gap?
- 8. What near-term (5-10 year) R&D are needed to enable design, construction, and operation of the needed NCT facility?

Nuclear Component Testing (NCT) Discussion Group inputs to FESAC Panel, 8/7/07, PPPL

Presentations:

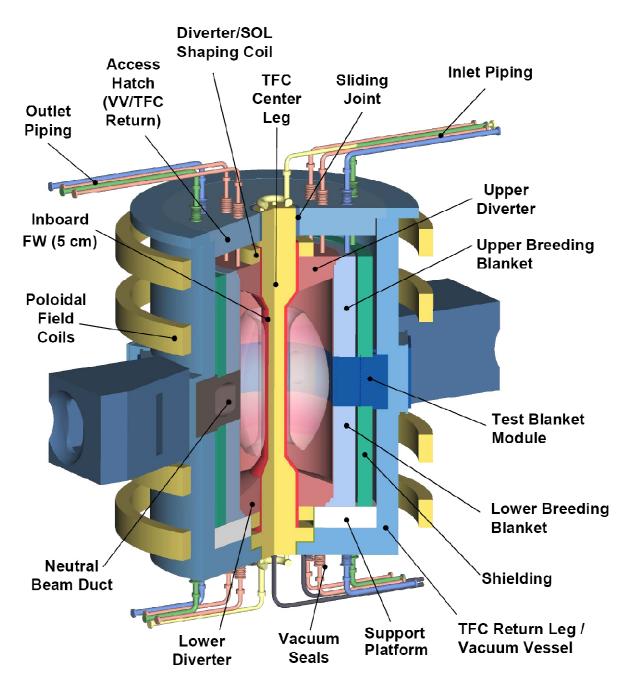
- Need and opportunities for NCT gap-filling capabilities
- Why is the FW/blanket/divertor components reliability and lifetime a Demo R&D gap?
- Why is full remote handling a Demo R&D gap?
- Tungsten plasma facing surface performance

Written "2-pagers":

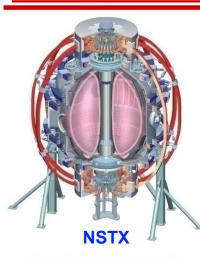

- Need and opportunities for NCT
- FW/Blanket/Divertor Reliability and Lifetime
- Full Remote Handling
- Plasma Facing Surface Performance and Maintainability
- Tritium Self-Sufficiency
- Tritium Retention, Accountability and Safety
- FW/Blanket/Divertor Materials Defect Control
- Public Safety and Environmental Protection
- Regulatory Permit for Demo Plant Operation

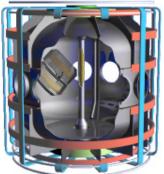
FESAC Greenwald Panel: Relationship of Initiatives to Gaps

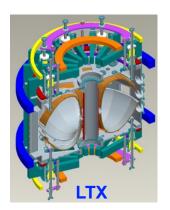
How Initiatives Could Address GapsLegendMajor Contribution3Significant Contribution2Minor Contribution1No Important Contribution1	G-1 Plasma Predictive capability	G-2 Integrated plasma demonstration	G-3 Nuclear-capable Diagnostics	G-4 Control near limits with minimal power	G-5 Avoidance of Large-scale Off- normal events in tokamaks	G-6 Developments for concepts free of off-normal plasma events	G-7 Reactor capable RF launching structures	G-8 High-Performance Magnets	G-9 Plasma Wall Interactions	G-10 Plasma Facing Components	G-11 Fuel cycle	G-12 Heat removal	G-13 Low activation materials	G-14 Safety	G-15 Maintainability
I-1. Predictive plasma modeling and validation initiative	3	2		2	2	3	1		2						
I-2. ITER – AT extensions	3	3	3	3	3		2		2	2	1	1		1	1
I-3. Integrated advanced physics demonstration (DT)	3	3	3	3	3	1	3	2	3	3	1	1	1	1	1
I-4. Integrated PWI/PFC experiment (DD)	2	1		1	2		2	1	3	3	1	1		1	1
I-5. Disruption-free experiments	2	_1		2	1	3		1	1	1					
I-6. Engineering and materials science modeling and experimental validation initiative							1	3	1	3	2	3	3	2	1
I-7. Materials qualification facility							1			3	2	1	3	3	
I-8. Component development and testing			1				2	1		3	3	3	2	2	2
I-9. Component qualification facility	1	1	2	1	2		3	2	2	3	3	3	3	3	3


Fusion Engineering Science and Technology R&D

Demo knowledge base requires interactive R&D among stakeholders of underlying science and enabling capabilities


ST configuration offers attractive designs for fusion


engineering science & technology R&D


W _L [MW/m ²]	0.1	1.0	2.0			
R ₀ [m]	1.20					
А	1.50					
kappa		3.07				
q _{cyl}	4.6	3.7	3.0			
B _T [T]	1.13	2.	18			
lp [MA]	3.4	8.2	10.1			
Beta_N	3	3.8				
Beta_T	0.14	0.18	0.28			
n _e [10 ²⁰ /m ³]	0.43	1.05	1.28			
f _{BS}	0.58	0.49	0.50			
T _{avgi} [keV]	5.4	10.3	13.3			
T _{avge} [keV]	3.1	8.1				
Q	0.50	0.50 2.5				
P _{aux-CD} [MW]	15	31	43			
E _{NB} [keV]	100	239	294			
P _{Fusion} [MW]	7.5	75	150			
T M height [m]						
T M area [m ²]	14					
Blanket A [m ²]	66					
F _{neutron-capture}	0.76					

Combining Proof-of-Principle & Concept Exploration offers timely opportunities to obtain the needed data

PEGASUS

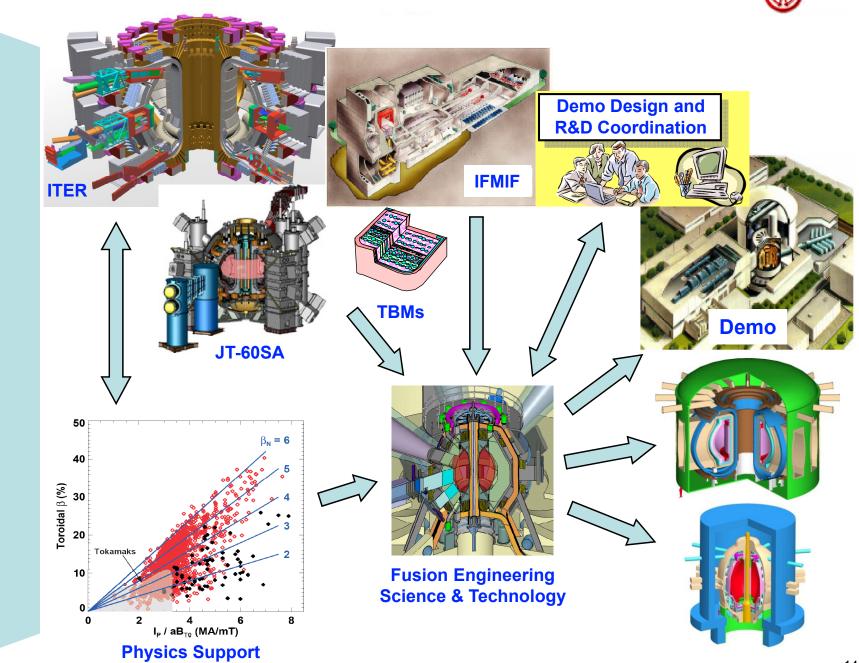

- NSTX: establishes ST physics basis
 - Commonalities in Tokamak physics (ITPA); new insights
 - ST issues: start-up, over-dense plasma waves, divertor, etc.
- Pegasus & LTX: explore key scientific feasibilities
 - Plasma gun start-up; very low A physics
 - Plasma & lithium wall; very low recycling physics

	<u>NSTX (PoP)</u>	<u>Pegasus (CE)</u>	LTX (CE)
R ₀ (m)	0.85 – 0.95	0.2 - 0.45	0.4
А	1.3 – 1.6	1.12 – 1.3	1.5
l _p (MA)	1.5	0.3	0.4
R₀B _T (m-T)	0.51	0.1	0.13
I _N (MA/m-T)	7.2	20	3
P _{NBI} (MW)	7	TBD	0.2
P _{RF} (MW)	6	1	TBD
τ _{pulse} (s)	1.5	0.05	0.25

U.S. ST Coordinating Committee (STCC) has begun its work to enhance ST R&D and collaborations

- Support the evolving role of ST in the U.S. fusion program
- Coordinate milestones, plans, and longer term goals
- Review and report progress relative to funded R&D
- Represent and advocate ST Program nationally, and internationally through the IEA ST Executive Committee
- Membership selected to represent major R&D components
 - Three ST experiments: NSTX (Jon Menard), Pegasus (Aaron Sontag), LTX (Dick Majeski)
 - ST R&D on diagnostics (Fred Levinton) and theory-modelingsimulation (Bill Dorland), and by universities (Steve Sabbagh), national laboratories (Don Hillis), and GA (Rob LaHaye)
 - Chaired by Martin Peng

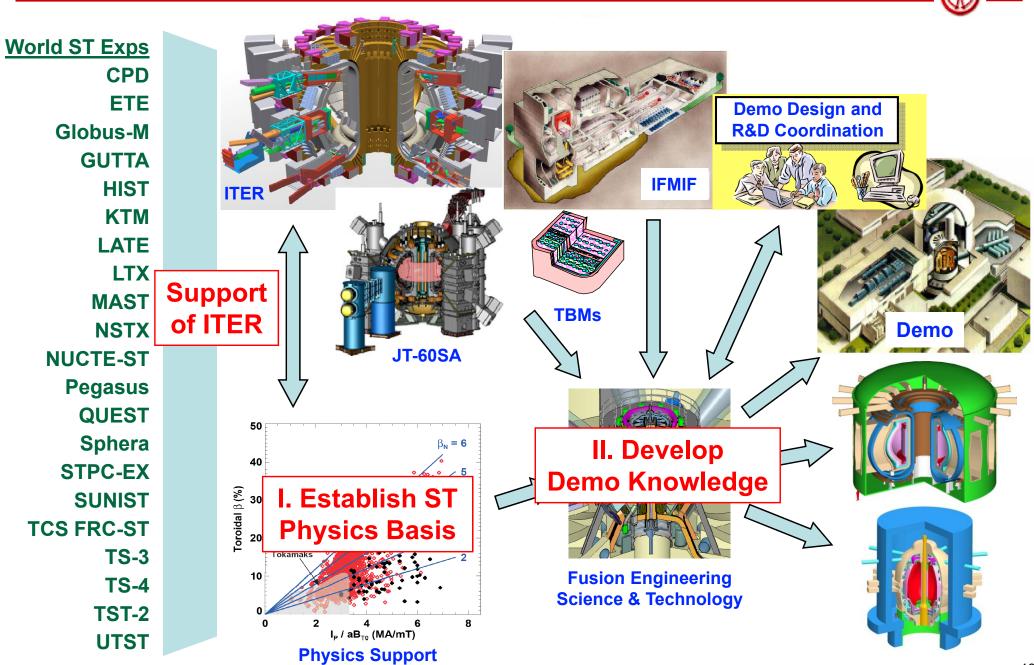
World ST Program is growing in capabilities and goals



IEA ST Implementing Agreement provides timely tools to enhance worldwide ST research cooperation

- Objective
 - Strengthen cooperation among ST research programs and facilities to
 - Enhance effectiveness and productivity of fusion science and technology research
 - Extend the scientific and technology database of toroidal confinement concepts to the ST regime
 - Establish a scientific and technological basis for the successful development of fusion power using ST
- Contracting Parties (Executive Committee Members)
 - EURATOM (Gianella, Lloyd)
 - National Institutes of Natural Sciences (NINS) (Motojima, Takase)
 - USDOE (Eckstrand, Peng)

World ST R&D is an integral part of fusion program that supports, supplements, and benefits from ITER & BA activities



Suggested IEA ST work in the Era of ITER & BA

- Two broad areas of research collaboration (Annexes: 2008-2011)
 - I. Coordinate collaboration on research and upgrades in support of ST development
 - II. Coordinate development of component test facilities with Broader Approach in support of Demo
- Organize annual international workshops (ISTW07 Kyushu 10/07; ISTW08 - Frascati) and research collaboration forums
- Promote & represent ST fusion R&D in worldwide
 - Invite of Brazil, PRC, RF, etc. to join Agreement
 - Enhance coordination of activities within Contracting Party
 - Publish special ST issue in refereed journal (~2008)
 - Create and maintain world ST website and links

The ST community is prepared to work actively with ITER and BA to meet the Grand Challenge of fusion energy

