Research Plans for OMEGA EP

John M. Soures University of Rochester Laboratory for Laser Energetics FPA Annual Symposium Oak Ridge, TN 4–5 December 2007

Summary OMEGA EP has five primary missions

- 1. Extend HED research capabilities with highenergy and highbrightness backlighting
- 2. Perform integrated advanced-ignition experiments
- 3. Develop advanced backlighter techniques for HED physics
- 4. Staging facility for the NIF to improve its effectiveness
- 5. Conduct ultrahigh-intensity laser-matter interactions research

OMEGA EP will be completed in Q3 FY08

OMEGA EP beams has four NIF-like beams; two of these can be operated with ps pulses

- Each beam duration can be as short as 1 ps at reduced energy (grating damage and *B*-integral)
- Beam 2 can produce 2.6 kJ in 10 ps when propagating on a separate path

The OMEGA EP architecture is based on multi-configurable beam paths

Initial activation has been completed up to the switchyard

Recovery from amplifier thermal distortion supports 1-h repetition rate

 Nonuniform heating of amplifier disks causes an S-bend, leading to an astigmatic defocusing of the beam.

• Water cooling allows rapid recovery of wavefront.

UR

OMEGA EP integration is nearly complete and commissioning is scheduled for Q3 FY08

UR LLE

IR activation to 3 kJ Completed Grating Compressor alignment June–October 2007 Short-pulse alignment to target chamber November–January 2008 UV activation November–January 2008 Short-pulse activation February–April 2008

OMEGA and OMEGA EP will be operated as user facilities as part of NNSA's Complex 2030

• LLE has implemented a new facility governance plan.

UR ·

- All users participate in the governance plan.
- The LLE Director approves a facility schedule that supports NNSA requirements.
- LLE hosted OMEGA EP Users' Workshops in January 2006 and May 2007.
- LLE will host a third OMEGA EP Users' Workshop in February/March 2008.

OMEGA facilities are essential for supporting ICF/NIC and HED/SSP campaigns, and basic science.

The fast-ignition concept reduces the compression energy required by providing external heating of the hot spot

- The basic fast-ignition concept*
 - assemble fuel to high densities without creating a hot spot
 - requires 50% less driver energy
 - use an external heating source to heat a ho R ~ 0.3 g/cm² region to 10 keV
- This reduces the required driver energy for similar gain to conventional ICF.

*M. Tabak et al., Phys. Plasmas <u>1</u>, 1626 (1994).

Fast-ignition research with cryogenic fuel will be conducted on OMEGA with the high-energy-petawatt OMEGA EP

¹M. Tabak *et al.*, Phys. Plasmas <u>1</u>, 1626 (1994).

²R. Kodama, Nature <u>418</u>, 933 (2002).

Integrated cryogenic DD FI experiments on OMEGA will validate/ compare both channeling and cone concepts on a single facility

Cone targets

Petawatt beam - OMEGA EP

Direct-drive DD and DT cryo capsules

- Proven diagnostics
- Proven cryogenics

🙋 🔶 🔶 🔶

X-ray imaging

Neutron imaging

E11738d

∆<E_p>(MeV)

OMEGA EP will have 2 ~ 3 higher drive pressures for EOS experiments than available on OMEGA

• The long-pulse UV OMEGA EP beams will drive shock waves of ~30 Mbar in Al and 5 Mbar in D_2 .

• OMEGA EP will be equipped with a VISAR/SOP and planar cryogenic target handling for EOS studies.

The combination of long- and short-pulse beams on OMEGA EP will allow high-photon-energy backlighting of compressed materials

- High-photon-energy backlighting of shock-compressed materials has been demonstrated at RAL.
- Backlighting in underground experiments allowed increased understanding.
- Higher pressures and photon energies are available on OMEGA EP.

High-energy PW systems can be used to isochorically heat solid-density matter to high temperatures

JR

Fast-electron refluxing in small-mass targets allows access to high-energy-density phenomena FSE

¹S. P. Hatchett *et al.*, Phys. Plasmas <u>7</u>, 2076 (2000).
²R. A. Snavely *et al.*, Phys. Rev. Lett. <u>85</u>, 2945 (2000).
³W. Theobald *et al.*, Phys. Plasmas <u>13</u>, 043102 (2006).
⁴J. Myatt *et al.*, Phys. Plasmas <u>14</u>, 056301 (2007).

The K_{β}/K_{α} ratio is sensitive to the bulk-electron temperature

• In the cold limit $K_{eta}/K_{lpha} \approx 0.14$

- For T_e = 400 eV, the copper M-shell is completely depleted
- K_β/K_α variation with temperature can be studied experimentally using various mass targets (for fixed laser conditions)

A 3.5× reduction of K_{β}/K_{α} for target volumes $V = 10^{-6} \text{ mm}^3$ is consistent with bulk-electron temperatures $T_e \gtrsim 200 \text{ eV}$

Summary/Conclusions

OMEGA EP has five primary missions

- 1. Extend HED research capabilities with highenergy and highbrightness backlighting
- 2. Perform integrated advanced-ignition experiments
- 3. Develop advanced backlighter techniques for HED physics
- 4. Staging facility for the NIF to improve its effectiveness
- 5. Conduct ultrahigh-intensity laser-matter interactions research

OMEGA EP will be completed in Q3 FY08

OMEGA EP