Status of Laser Fusion Research in Japan

Kunioki Mima Institute of Laser Engineering, Osaka University

Fusion Power Associate'08 December 3, 2008, CA, USA

Outline

ILE OSAKA

- Introduction
- 1. FIREX project: LFEX laser
- 2. A New target design for fast ignition
- **3.** Fusion neutron applications and future plan
- Summary

Fast Ignition opens a new rout to compact IF Reactor

Fast Ignition Equivalent Plasma Experiment will be done by FIREX-I and OMEGA-EP

Construction of LFEX (10kJ PW Laser)

ILE OSAKA

N. Miyanaga, H. Azechi, K. A. Tanaka^A, T. Kanabe^B, J. Kawanaka, Y. Fujimoto, K. Kondo^A, T. Jitsuno, H. Shiraga, K. Tsubakimoto, Y. Nakata, R. Kodama^A, H. Habara^A, K. Sueda, K. Yasukawa, J. Lu, G. Xu, N. Morio, S. Matsuo, S. Kitamura, K. Sawai, K. Suzuki, and K. Mima

Institute of Laser Engineering, Osaka University ^AGraduate School of Engineering and Institute of Laser Engineering, Osaka University ^BGraduate School of Engineering, University of Fukui, Fukui e-mail: miyanaga@ile.osaka-u.ac.jp

Present view of the installed gratings fabricated by PGL, MS., USA for LFEX

Focusing test: 40µm^{\$} spot of one beam

Target design with FI³ simulation system Fast Ignition Integrated Interconnecting code

ILE OSAKA

Radiation hydro PIC simulation simulation (PINICO) Laser plasma interaction Density profile High energy electron phase space profile Density and temperature profiles **Fokker Planck** simulation with hydro 2E+15 1.5E+15 1E+15 Sakagami,H. 5E+14 Laser&Part.'05 Nagatomo,H. **POP**, 2006

Collaboration; Osaka Univ. , NIFS, Kyushu Univ. Setunan Univ., Nevada Univ. Reno

PINOCO 2-D Implosion Simulation of a Cone Shell Target Plasma motion is compared with experiments

Design Parameter of the FIREX-I

Heating Requirement for CD plasma and DT plasma (cryogenic target)

High coupling efficiency from laser to core (Relativistic electron generation and transport)

ILE OSAKA

The coupling efficiency depends on REB temperature, transport,---

Laser intensity; $I_L = 2x10^{15} \text{ W/} \pi r_h^2 \sim 1 \sim 2x \ 10^{20} \text{ W/cm}^2$ Electron energy; $T_h = (\gamma - 1)\text{mc}^2$, $\gamma_p = [1 + I_L/(2.4x10^{18}\text{W/cm}^2)]^{1/2}$: $T_h \sim 5 \text{ MeV}$ T_h -scaling: $T_h \sim \gamma_p \ (n_c/n_{UP})^{1/2} \sim I_L^{1/3}$ good news!, Beam transfer and divergence

High energy electrons can be confined to increase coupling efficiency

High energy electron energy density in single cone and double cone

ILE OSAKA

TABLE: Simulation energy flux normalized by the input laserpower for single cone and double cone.

	cone tip		side wall	backward
	(-18, 18) λ	(-8 , 8) λ		
Single	31.4	18.6	23.9	0.41
Double	38.4	28.6	8.9	0.41

 $dQ_{h}/dt = G - Q_{h}(cS/3V)(1-\beta) - Q_{h}(cS_{0}/3V)$

source side wall loss / forward emission

Q_h: stored energy

$$Q_{\rm h} = G/((cS/3V)(1-\beta) + (cS_0/3V))$$

When β approach 1, $Q_h(cS_0/3V) = G$

Advanced target for FIREX-I

Inner foam -> Absorption Double cone -> Ele. transport efficiency Outer CH layer -> Expansion suppression Br doped capsule -> Hydro stabilization Vacuum center -> Jet mitigation

IFE Forum, Osaka Univ. and GPI Joint Committee on Laser Neutron Applications (since Jan. 2008)

ILE OSAKA

A plan for international demonstration of power generation by 2030

ILE OSAKA

• Osaka University and NIFS are in collaboration for FIREX project in target fabrication, simulation, and experiment.

- The 10kJ petawatt laser: LFEX is completed and one beam experiment starts in Dec. 08.
- Integrated fast ignition simulation code FI3 has been applied to the FIREX target design.
- A new target design concept are investigated for the coming FIREX-I experiments in 2009.
- Applications of laser fusion neutron for science and industry are explored.

Broad-band (CPA) activation test of main amplifier

Final test will start soon aiming at 12kJ/4 beams.