# A Pilot Plant: The Fastest Path to Net Electricity from Fusion

Fusion Power Associates Thirty-year Anniversary Meeting and Symposium Rob Goldston December 3, 2009

### The MFE Program Needs to Move Faster

### Situation

- Need to demonstrate the practicality of MFE soon.
- But: ITER's earliest-case first plasma is in 2018. Earliest-case Q = 10, 300 – 500 seconds in 2028.

### Implications

- ⇒ Building a Component Test Facility and <u>then</u> building Demo to produce net electricity may not be the fastest path.
- ⇒ Consider construction of a device to make <u>net electricity</u> as soon as a technically sound design can be developed.
  - $Q_{eng} > 1 \equiv$  "Pilot Plant", making net electricity.
  - Pilot Plant would also perform the component testing mission.

# Three Key Science Needs for a Technically Sound MFE Pilot Plant Design



Themes from FESAC Priorities, Gaps and Opportunities Report (ReNeW Themes 1, 2 & 5 included in Plasma Performance)

# What Science is Needed for a Technically Sound MFE Pilot Plant Design? (1)

### **Plasma Performance**

- Scaling of confinement, operating limits and sustainment in non-inductive plasmas
- Confinement scaling to relevant  $\rho^{*}$  and  $\upsilon_{*}$
- Alpha heating physics
- Scaling information at low A
  - Power plant maintenance most credible at low A.
- Scaling information for stellarators
  - Stellarators most credible for disruption avoidance, sustainment with low recirculating power
- Are there faster/better/cheaper alternatives?
  - ICCs

## Example: Confinement Scaling to ITER Long-Pulse "Hybrid" Mode Uncertain



Projection to CTF, Pilot Plant or Demo is not settled. Latest matched DIII-D + JET results look better on these axes, but still do not give needed favorable "Gyro-Bohm" scaling of Bτ.

# What Science is Needed for a Technically Sound MFE Pilot Plant Design? (2)

### **Integrated Plasma-Materials Interface**

- High heat and particle flux and fluence
  - What divertor designs work at needed power & duty factor?
  - What materials work at needed power & duty factor?
- Tritium retention
  - How to remove tritium in continuous operation?
  - All plasma-facing components (PFCs) must operate very hot.
- Dust production
  - How to remove dust in continuous operation?
- Practical experience with high-pressure He-cooled PFCs
- Practical experience with liquid metal PFCs
- Effects of ELMs and high-energy disruptions
  - Major issue for blanket / first wall survival in tokamaks & STs.

Significant synergy with many IFE concepts.

### Pilot Plant PMI Challenges Similar to PMI Challenges Projected for CTF

#### • Heat flux, pulse length, duty factor for Pilot Plant (PP) ~ CTF

| • | CTF: 2x ITER's heat flux | Demo: 4x ITER's heat flux    |
|---|--------------------------|------------------------------|
| • | CTF: 2 week pulses       | Demo: Few month pulses       |
| • | CTF: 30% duty factor     | Demo: up to ~70% duty factor |

- Real-time dust removal, tritium inventory control and component lifetime issues are challenging due to CTF, PP & Demo missions
  - Must remove dust and tritium in real time: CTF, PP, Demo
  - Need to demonstrate PFC solution that allows long periods of high power operation between change-outs, including off-normal events: CTF, PP, Demo
  - ITER with few % duty factor, plans to change out divertors after
    ~ 0.08 full-power years at much lower power density.
- Many solutions used on ITER are not CTF, PP or Demo relevant.
  - Beryllium first wall
  - Stainless-steel vacuum vessel
  - Water cooled ~200C PFCs
  - Intermittent dust collection and tritium clean-up

### CTF, PP or Demo: All Would Need New PMI Solutions.

# What Science is Needed for a Technically Sound MFE Pilot Plant Design ? (3)

- A strong blanket technology program is required for CTF, PP or Demo.
- Design of CTF, PP or Demo would be informed by a powerful point neutron source such as IFMIF (or MTS?). For example:
  - Vacuum vessel design depends on properties of hot main blankets: electrical conduction paths, structural integrity, size, services (coolant, T purge fluid).
  - Hot main blanket design depends on material properties w/14 MeV neutrons.
  - Same logic holds for many other components, *e.g.*, divertors, antennas.
  - Point neutron source needed to develop materials for test blankets.
- Tritium breeding uncertainties can be mitigated by Li isotopic mix.
  - Tritium cycle can be confirmed in Pilot Plant.
- ReNeW on this topic:

A later possibility might be to include a provision for materials irradiation capabilities as part of a large-scale nuclear facility such as the proposed Fusion Nuclear Science Facility. However, it must be emphasized that bulk material property data from a fusion relevant neutron source would inform the design, construction and licensing of such facilities.

### A point neutron source has high synergy with many IFE concepts.

# Facilities to Contribute to a Technically Sound MFE Pilot Plant Design



# **Roles of Major Facilities**

#### Plasma Performance

- ITER for  $\rho^*$  scaling,  $\alpha$ –particle heating
- Existing tokamaks, Asian S/C tokamaks for AT pilot plant option
- LHD, W7-X, (NCSX?) at relevant  $\beta$  and  $v_*$  for stellarator pilot plant option
- NSTX, MAST at relevant  $\beta$  and  $\nu_{*}$  for low aspect ratio pilot plant option

### Integrated Plasma-Material Interface

- Existing tokamaks, Asian S/C tokamaks, NSTX-U, MAST, test stands, for initial tests of new PFC geometries and materials.
- ITER for effects of high-energy ELMs and disruptions.
- Long-pulse, hot walls, high-heat-flux DD confinement facility for integrated power and particle handling studies. Develops solutions for divertor lifetime, tritium retention, dust clean-up, long-pulse disruption avoidance.

#### Neutron Material Interactions

- Fission reactors, ion beams to sieve candidate materials.
- Blanket test stands to develop required technologies.
- IFMIF (or MTS?) with correct He/dpa to investigate materials physics at high fluence; qualify materials to be used in PP design, then test blankets.

# Is a Pilot Plant Smaller than a Demo?

- Assume conservatively that recirculating power, P<sub>rec</sub>, is constant from Pilot Plant (PP) to Demo
- Assume recirculating fraction in Demo is 20%;  $Q_{eng} = 5$
- Assume Pilot Plant Q<sub>eng</sub> = 1.2
- $P_{e,gross,Demo} = 5 P_{rec}$ ;  $P_{e,gross,PP} = 1.2 P_{rec}$
- P<sub>e,gross,PP</sub> = 0.24 P<sub>e,gross,Demo</sub>
- Assume Demo-level B &  $\beta \Rightarrow R^3 \propto P_{fus} \propto P_{e,gross}$

Assume adequate confinement

- $P_{fus,PP} = 0.24 P_{fus,Demo}$ ;  $R_{PP} = 0.62 R_{Demo}$
- Neutron wall loading in Pilot Plant = 0.62 Demo neutron wall loading

Obviously there are other factors (*e.g.,* neutron m.f.p.). On the other hand P<sub>rec</sub> = constant is conservative. Initial looks at Tokamak, ST, Stellarator support R<sub>PP</sub> ~ 0.6 R<sub>Demo</sub> Spreadsheet Pilot Plants Assuming High Confinement are Encouraging

- Tokamak
  - R/a = 4.0m/1.0m,  $B_0 = 6T$ ,  $I_p = 8MA$
  - $H_H = 1.5$ ,  $P_{fus} = 520$ MW,  $Q_p = 10$ ,  $Q_{eng} \sim 1$
- ST
  - R/a = 1.5m/0.9m,  $B_0 = 2.2T$ ,  $I_p = 15$  MA
  - $H_{H}$  = 1.7,  $P_{fus}$  = 500MW,  $Q_{p}$  = 25,  $Q_{eng}$  ~ 1
- Stellarator
  - R/<a> = 4.5m/1.0m, B<sub>0</sub> = 5.7T
  - $H_{ISS04}$  = 2,  $P_{fus}$  = 470MW,  $Q_p$  = 40,  $Q_{eng}$  ~ 4

These spreadsheet analyses are only very first looks. Engineering scaled simply from ARIES studies.

# **Much More Analysis is Required**

### • What would an MFE Pilot Plant look like?

- Advanced Tokamak (Superconducting for Q<sub>eng</sub> > 1)
- Spherical Torus (Most readily maintained configuration)
- Stellarator (Lowest recirculating power, no disruptions)

Any design should prototype Demo maintenance approach.

- What near-term program of Modeling, Test Stand R&D, New Facilities is necessary to support a Pilot Plant?
  - Plasma performance
  - Integrated plasma material interface
  - Neutron interactive materials

# A Pilot Plant is an Exciting Goal

### • We can explain it to our sponsors and the public

- We have a plan to make net electricity soon.
- This will put fusion "on the map" as an energy option.

### • It would culminate the key FESAC Themes

- Creating Predictable High-Performance Steady-State Plasmas
- Taming the Plasma-Material Interface
- Harnessing Fusion Power

### • ARIES + Fusion Community Pilot Plant Study?

- What would a tokamak, ST or stellarator Pilot Plant look like?
- What supporting program is needed for a technically sound design?
- A similar IFE Pilot Plant study should be carried out in parallel.