Magnetic Fusion Pilot Plant Studies

Jon Menard

Princeton Plasma Physics Laboratory

Fusion Power Associates 31st Annual Meeting and Symposium Fusion Energy: Focus on the Future Capitol Hill Club, 300 First Street, Washington, DC December 1-2, 2010

Exploring "Pilot Plant" as a possible pathway from ITER to commercial fusion power plant

Strategic purposes of the pilot plant study

- 1. Understand the characteristics of pilot plant
 - Role as step to commercial magnetic fusion energy (MFE)
 - Identify pre-requisite R&D, remaining gaps to MFE
- 2. Provide a menu (for comparison) of possible MFE roadmaps, with and without a pilot plant.
 - "Existence proof" of a path to MFE
- 3. Contribute to the national Pathways Activity.
 - Follow a "roll-back from Demo" approach.
 - Help define mission, needed characteristics, and R&D needs for a next-step facility.
 - Help define requirements for near-term research programs in materials-related research.

Pilot plant goals, capabilities

• Pilot Plant goal:

Integrate key science and technology capabilities of a fusion power plant in a next-step R&D facility.

- Targeted ultimate capabilities:
 - Fusion nuclear S&T development, component testing
 - Steady-state operating scenarios
 - Neutron wall loading \geq 1MW/m²
 - Tritium self-sufficiency
 - Maintenance scheme applicable to power plant
 - Demonstrate methods for fast replacement of in-vessel components
 - Net electricity production

$Q_{eng} \sim 1$ requires improved technology and physics

Motivation for studying 3 configurations:

Advanced Tokamak (AT)

- Most mature confinement physics, technology

- Spherical Tokamak (ST)
 - Potential for simplified maintenance, reduced cost
- Compact Stellarator (CS)

- Low re-circulating power, low/no disruptions

Size of AT pilot driven by magnet technology

- For ITER TF magnet parameters, AT pilot would have $R_0 = 6-7m$
- Advances in SC TF coil technology and design needed (also needed for CS pilot)

• A = 4 = 4m / 1m
•
$$B_T = 6T$$
, $I_P = 7.7MA$
• Avg. $W_n = 1.3-1.8 MW/m^2$
• Peak $W_n = 1.9-2.6 MW/m^2$

Size of ST pilot depends primarily on achievable β_N

Higher density favorable for reducing β_N and H_{98} (also fast ion fraction)

Size of CS pilot driven by magnet technology and neutron wall loading, but not Q_{eng}

= Pilot design point

• A = 4.5 = 4.75m / 1.05m
• B_T = 5.6T,
$$I_P$$
 = 1.7MA (BS)
• Avg. W_n = 1.2-2 MW/m²

• Peak
$$W_n = 2.4-4 \text{ MW/m}^2$$

All 3 configurations employ vertical maintenance

- AT and CS: segments translated radially, removed vertically
- ST: Top TF legs demountable, core/CS removed vertically
- Future work: maintenance schemes for smaller components

Pilot Plant can perform blanket testing

- Blanket development requirements:
 - Local W_{neutron} \ge 1 MW/m², test area \ge 10 m², volume \ge 5 m³
 - Three phases:
 - I. Fusion break-in ~ 0.3 MWy/m²
 - II. Engineering feasibility ~ 1-3 MWy/m²
 - III. Engineering development, reliability growth, \geq 4-6 MWy/m² accumulated
- $Q_{eng} \ge 1 \rightarrow P_{fus} = 0.3-1 \text{ GWth} \rightarrow 17-56 \text{kg of T per FPY}$
 - World T supply (CANDU) peaks at ~25-30 kg by 2025-2030
 - ITER + T decay projected to consume most of this amount
- All three pilots have sufficient testing area, volume
- To achieve Phase III 6MWy/m² (peak) → 45-72 kg T
 → Need TBR ≈ 1 (Example: need TBR ≥ 0.9 for 5-7 kg available T)

Abdou, et al. Fus. Technol. 29 (1996) 1

Summary of initial technical assessment

- Identified Pilot Plant configurations sized between FNSF/CTF and a conventional Demo incorporating:
 - Radial builds compatible with shielding requirements, TBR~1
 - Neutron wall loading \geq 1MW/m² for blanket development
 - Average W_n up to 2-3 MW/m² \rightarrow accelerated blanket development
 - Maintenance schemes applicable to power plants
 - Small net electricity to bridge gap to GWe power plant

Pilot Plant could be last step before a first of a kind fusion power plant

Backup slides

Demo Mission: Readiness for Commercial MFE from STARLITE study, 1995

- **Technology and Performance**: Demonstrate the technologies and plasma operating regimes planned for commercial power plants.
- Integration and Scalability: Demonstrate all systems working as an integrated unit, close to commercial scale (~75% in P_{ELEC}).
- Economics: Demonstrate cost-competitiveness.
- Safety, Licensing, Waste Disposal: Demonstrate that fusion lives up to its promise of safe, clean energy.
- **Reliability, Maintainability, Availability**: Demonstrate availability competitive with other energy sources, <1 unscheduled shutdown per yr.
- **Operability**: Demonstrate ease of operation, with routine emissions below allowable values.

U.S. Demo is a first-of-a-kind fusion power plant, the penultimate step to commercial MFE.

FY 2011 Pilot Study Goals

- 1. Identify characteristics and prerequisites for MFE Demo.
- 2. Sketch out various roadmaps to commercial MFE to better understand potential roles of pilot plants, CTFs, etc.
 - Options with and without FNSF/CTF
 - Options with and without pilot plant
 - Identify risks/benefits, pre-requisite R&D needed for CTFs, pilots
- 3. Enhance development of ST option for FNSF/CTF
 - Develop a design, provide some engineering support
 - Collaborate with Culham/MAST, others on design strategies
- 4. Conduct design activities in support of above goals

Pilot studies support DOE-FES strategic planning Series of DOE-chartered community studies

Greenwald and Toroidal Alternates Reports (2007-08)

Description of **S&T issues and knowledge gaps** between now and MFE Demo.

Description of **ITER-era research requirements** to close Greenwald- and TAP-identified gaps.

As requested by DOE, ReNeW had:

- •Complete menu
- No prioritization
- Some time-ordering

Pathways Assessment Activity (2010-11)

DOE request: Describe a subset of research requirements in enough detail for them to issue solicitations now (for FY-2012) and design programs in materialsrelated research.

DOE's charge to Pathways Activity

(E. Synakowski, 23 July 2010)

R&D needed for Pilot Plants

- Improved magnet technology:
 - SC AT/CS: Higher TF magnets at ~2× higher current density
 - ST: Large single-turn radiation-tolerant Cu TF magnets
 - CS: Further R&D of shaping by trim coils, HTS monoliths
- High-efficiency non-inductive current drive for AT/ST
- Advanced physics:
 - AT/ST pilot: 100% non-inductive, high κ and $\beta,$ low disruptivity
 - ST additionally requires non-inductive I_P ramp-up
 - QAS CS: need basis for simultaneous high confinement & β
- Plasma-material interface capabilities beyond ITER:
 - Long-pulses (~10⁶s), high duty-factor (10-50% availability goal)
 - High power-loading (P/S_{wall}~1MW/m², P/R~30-60MW/m, W/S~0.5-1MJ/m²)
 - High-temperature first-wall ($T_{wall} \sim 350-550C$, possibly up to 700C)

Pilot study has broad community participation

Magnets

• Leslie Bromberg, Joe Minervini, MIT

Blankets & Structural Materials

- Laila El-Guebaly, Mohamed Sawan, Univ. of Wisconsin
- Siegfried Malang, consultant
- Neil Morley, UCLA
- Rick Kurtz, PNNL

PMI, Divertor / First Wall

- Dennis Whyte, Bruce Lipschultz, Amanda Hubbard, MIT
- Rob Goldston, PPPL

Configuration / Maintenance

- Brad Nelson, ORNL
- Les Waganer, consultant
- Tom Brown, PPPL

Diagnostics and Instrumentation

Alan Costley, CCFE (UK)

Strategy Inputs

- John Sheffield, Univ. of Tenn.
- Abraham Sternlieb, Israel M.O.D.
- David Ward, CCFE (UK)
- Farrokh Najmabadi, UCSD
- Jiangang Li, ASIPP Director (China)

Plasma Configurations / Analysis

- Rich Hawryluk, Chuck Kessel, Jon Menard, Hutch Neilson, Stewart Prager, Mike Zarnstorff, PPPL
- Tommy Gerrity, MIT student
- Daniel Dix, Rob Kastner, Princeton Univ. students

Assumptions and constraints

- Surface-average neutron wall loading: $\langle W_n \rangle \ge 1 \text{ MW/m}^2$
 - Neutron wall load peaking factors (peak/avg): AT/ST/CS = 1.43/1.56/2.0
 - Blanket thermal conversion:
 - η_{th} = 0.3, 0.45 this range incorporates leading concepts: He cooled pebble-bed (HCPB), dual-coolant lead-lithium (DCLL)
 - M_n = 1.1, blanket coolant pumping power P_{pump} = 0.03×P_{th}, P_{sub} + P_{control} = 0.04×P_{th}
- Steady-state operating scenarios:
 - Fully non-inductive CD (BS+RF/NBI) for AT/ST
 - η_{aux} = 0.4, η_{CD} = I_{CD}R₀n_e/P_{CD} = 0.3 × 10²⁰A/Wm²
 - Superconducting (SC) coils for AT/CS, SC PF for ST
- Confinement and stability:
 - AT/ST: $\tau_E \propto$ ITER H-mode IPB98(y,2), β near/above no-wall limit
 - $\beta_N \leq$ present experimental values, density at or below Greenwald limit
 - − CS: $\tau_E \propto$ stellarator L-mode: ISS-04, $\beta \le 6\%$ (ARIES-CS)
 - Quasi-axisymmetry (QAS) for tokamak-like confinement, but higher n, lower T

1D neutronics calculations used to develop preliminary pilot plant radial builds

- 20 year plant lifetime, 6 full power years (FPY), 30% average availability,
- Blanket replacement: AT: 2.5 FPY, ST: 1.8/1.4 FPY IB/OB, CS: 1.7 FPY
- Skeleton-ring, vessel, SC coils are lifetime components, vessel re-weldable

• TBR ~1.1 for 1.0 net

(assuming full blanket coverage)

- Damage to $FS \leq 80$ dpa
- Re-weldability: ≤ 1 He appm
- •SC magnets operated at 4K
 - Peak fast neutron fluence to Nb₃Sn $(E_n > 0.1 \text{ MeV}) \le 10^{19} \text{ n/cm}^2$,
 - Peak nuclear heating ≤ 2 mW/cm³,
 - Peak dpa to Cu stabilizer $\leq 6 \times 10^{-3}$ dpa
- Peak dose to electric insul. $\leq 10^{10}$ rads

Key Radiation Limits and Design Parameters (CS Example)

Machine Average NWL (@ FW) Peak NWL	~1.9 ~3.8	MW/m ²
Average Major Radius	4.75	m
Average Minor Radius	1.05	m
Damage to FS Structure	10-80	dpa
Helium Production (for reweldability of FS)	1	He appm
TF S/C Magnets (@ 4 K): Peak fast n fluence to Nb ₃ Sn (E _n > 0.1 MeV) Peak nuclear heating Peak dpa to Cu stabilizer Peak dose to electric insulator	10^{19} 2 $6x10^{-3}$ $\sim 10^{10}$	n/cm² mW/cm³ dpa rads
Plant Lifetime	~20	years
Availability	10-50%	6 Full Power Years (FPY)
	30% ave:	rage

L. El-Guebaly, M. Sawan, Univ. of Wisconsin

Limit on SC TF coil effective current density is driven primarily by structural limits

- Possible ways to increase effective current density:
 - Alternative structural concepts: bucking versus wedging
 - Increased allowable stress via reduced cycling of magnet
 - Increased structural fraction by improvements in conductor:
 - superconducting properties, quench detection schemes resulting in decreased Cu requirements, decreased He
 - Grading of the conductor

Estimate that improvements above could increase effective current density by factor ≥ 1.5 (*L. Bromberg*)

- Reference:
 - J.H. Schultz, A. Radovinsky, and P. Titus, Description of the TF Magnet and FIRE-SCSS (FIRE-6) Design Concept, PSFC report PSFC/RR-04-3

Pilot plant parametric trends:

Peak neutron wall loading ~1MW/m² accessible at modest performance: Example: AT/ST with P_{fus} ~200MW, Q_{DT} =2.5/3.5, β_{N} =2.7/3.9

Pilot plant parameters at $Q_{eng} \ge 1$:

	AT		ST		CS				AT		ST		CS	
η _{th}	0.30	0.45	0.30	0.45	0.30	0.45		к	2	2	3.3	3.3	1.8	1.8
$A = R_0 / a$	4	4	1.7	1.7	4.5	4.5		Β _τ [T]	6	6	2.4	2.4	5.6	5.6
R ₀ [m]	4	4	2.2	2.2	4.75	4.75		I _Р [МА]	7.7	7.7	20	18	1.7	1.7
P _{fus} [MW]	553	408	990	630	529	313		q ₉₅	3.8	3.8	7.3	7.8	1.5	1.5
P _{aux} [MW]	79	100	50	60	12	18		q _{cyl}	2.4	2.4	2.8	3.0	-	-
<w<sub>n> [MW/m²]</w<sub>	1.8	1.3	2.9	1.9	2	1.2		f _{BS} or iota from BS	0.59	0.5	0.89	0.85	0.2	0.2
Peak W _n [MW/m ²]	2.6	1.9	4.5	3.0	4.0	2.4		n _e /n _G	0.9	0.8	0.7	0.7	-	-
Q _{DT}	7.0	4.1	19	10.5	42	17		H_{98} or H_{ISS04}	1.2	1.1	1.35	1.3	2	1.6
Q _{eng}	1	1	1	1	2.7	2.7		β τ [%]	4.6	3.9	39	30	6	6
							-	β _N	3.6	3	6	5.2	-	-