

LIFE Power Plant

Fusion Power Associates

December 14, 2011

Mike Dunne LLNL

Lawrence Livermore National Laboratory • Laser Inertial Fusion Energy

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LIFE

LIFE delivery timescale

400 MW to 1,600 MW

2030's

02EIM/bc · NIF-0911-22875s2

1) Use of diode-pumped laser technology

- High efficiency allows near-term, NIF based, NIC-derivative fusion performance
- 3\omega allows small, thin Fresnel lenses enables use of existing data, and mitigates two major offline R&D programs (survival, maintenance)
- Solid state architecture enables tracking and engagement with no moving parts
- Builds on long-standing development of high repetition, robust laser performance
- Leverages substantial market (flat-panel displays, etc)

- 2) Indirect drive allows gas filled, dry wall chamber using known materials
 - Modular, replaceable engine units, decoupled from optical & pumping systems

 allows structural material solution consistent with existing data (10 dpa)
 - Removes ion threat and mitigates x-ray threat allows simple steel piping
 - No need for chamber clearing removes major offline research program
 - Unsealed FW/B decouples material response from safety basis (and no need to determine a new regulatory solution for calculations of a disrupted liquid wall)

- 3) Laser IFE decouples driver, fusion performance and wall response
 - Allows high tritium breeding ratio providing high design margin
 - Design freedom for choice of heat transfer fluid. Solubility of tritium in Lithium enables benign operational regime, and removes need for safety-critical SSCs
 - Design freedom to manage in-chamber chemistry control tritium holdup
 - Design freedom for wall material provides pathway to class-A low level waste

- Major impact on the safety case and licensing timescales
- Plant rollout will no longer be limited by tritium availability

4) Architecture and approach that mirror NIF and AVLIS

- Application of directly relevant experience in facility design, construction, operation and maintenance
- Use of well established, and proven, vendor base

I IFF

- 5) Line-Replaceable Unit (LRU) architecture for major sub-systems
 - Allows parallel development of key technology, fallback options and future upgrades via conventional project interface control methods

- 6) Progression directly to economically viable, utility-scale plants allows private-sector driven approach
 - Donald Brandt—President and CEO, Pinnacle West Capital Corporation
 - Joseph Callan—Former Executive Director, U.S. Nuclear Regulatory Commission
 - David Christian—CEO, Dominion Generation; President, Virginia Power
 - Peter Darbee—CEO and President, Pacific Gas & Electric Company (Ret.)
 - Brian Debs (Member in residence)—former SVP, Ontario Power Generation Corp.
 - William Fehrman—President and CEO, MidAmerica Energy Company
 - Richard Kuester—CFO, Wisconsin Energy Corporation
 - Charles "Chip" Pardee, SVP and COO, Exelon Generation
 - Michael Sellman (Chairman)—CEO, Nuclear Management Company (Ret.)
 - Michael Wallace—COO, Constellation Energy Group (Ret.)

In principle, many fusion options exist. NIF/LIFE allows timely integrated demonstration.

- Fusion performance based on an existing facility
- Tritium inventory that allows a regulatory solution adaptable from existing approaches
- Driver technology drawn from existing markets
- Engine solution using known materials
- Private-sector led funding and delivery
- Offline testing requirements consistent with facility build schedule
 - 42 Work Packages
 - 470 Functional Requirements
 - 970 Work Statements
 - 185 Milestones
 - 250 Line Integrated Project Schedule
 - 35 vendors consulted

ssues		Consequence	Current Status	Modeling/Concept Level Development	Testing/Laboratory Environment	Testing/Initial Pilot Operations
Fusion Fuel Design and Performance						
	Gain >60	м				
	On-the-fly ignition	н				
	> ~99% probability of ignition	м				
	Fuel materials compatibilities	н				
Fusion Fuel Manufacturing						
	DT layer in production environment	н				
	Fuel survival: injection, flight	н				
	Mass manuf: 400M/yr, <\$1	н				
	Tritium Inventory-Fuel Filling	M				
Tritium Fuel Cycle						
	Tritium Breeding Ratio	н				
	Recovery from Li	н				
	Recovery from Xe	н				
Fuel Pellet Injection and Tracking						
	Accurate and repeatable in fusion env	н				
	Injector reliability in fusion env	м				
	Fuel survival in injector (fusion env)	н				
	Injector availability	м				
	Pellet tracking in fusion env	н				
Laser Fusion Driver						
	Rep-rate operation	н				
	Final optic survival	н				
	Electrical efficiency	L				
	Pellet engagement	н				
	Focal spot consistent with LEH	н				
	Laser system availability	м				
Fusion Engine						
	First wall radiation damage survival (FMS) 10 dpa	н				
	Chamber clearing	н				
	Debris management-from chamber outlet	н				
	Heat Transport - from chamber outlet	м				
	Thermal and mechanical insults	н				
	Corrosion	м				
	Chamber Design consistent with Fabrication	м				
	Availability	м				
	Concept of chamber replacement	м				
	Production capability for Chamber Materials (FMS)	м				
Power Conversion Systems						
	Tritium release through Rankine cycle	м				
Licensing and Regulatory						
	Licensing strategy	н				
	Auth for initial ops	н				
	NRC license for ComOps	н				
	Regulator approval of waste streams	н				

I IFF

LIFE

LIFE delivery timescale

400 MW to 1,600 MW

2030's

