

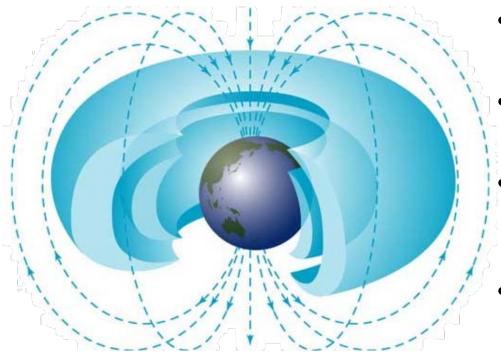
Results from the Levitated Dipole Experiment

J. Kesner

Columbia University

MIT Plasma Science and Fusion Center D.T. Garnier, M.E. Mauel,

Columbia University

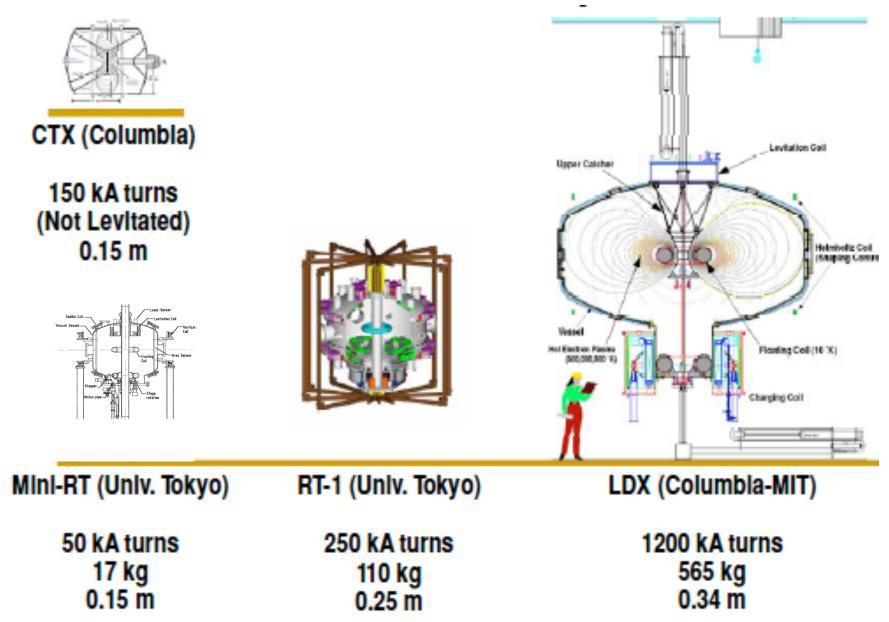

Fusion Power Associates 32nd Annual Meeting Washington, DC December 15, 2011

FES: Advance the fundamental science of magnetically confined plasmas

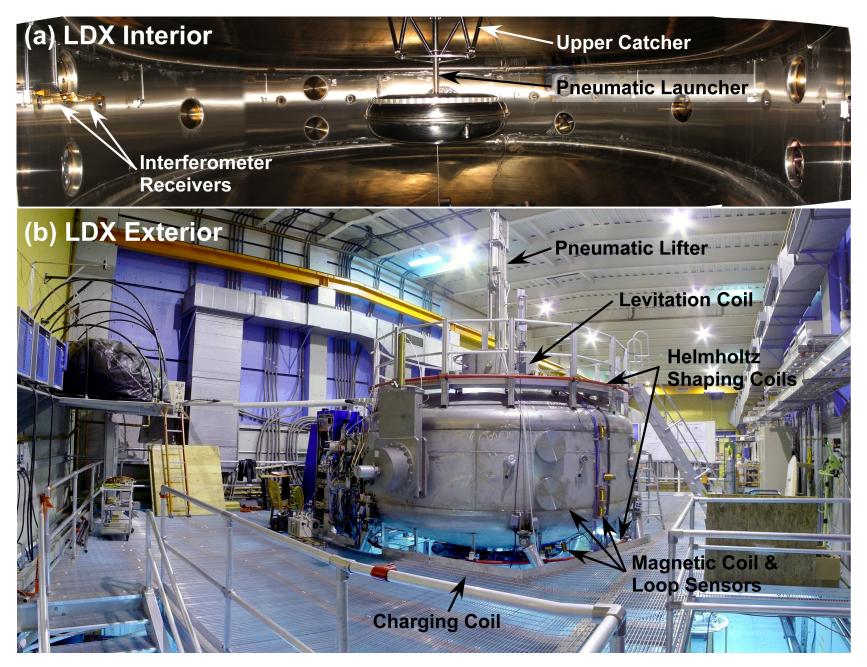
- Too early to narrow research to tokamaks (disruptions, steady state, ...)
- Different pathways lead naturally to breadth in science and technology
- Example: Confinement in the field of a levitated dipole
 - Unique physics illuminated by closed field line systems
 - Unique technology challenges: superconducting magnet development

Dipole concept was inspired by over 50 years of magnetospheric research: earth, Jupiter...

- Gold (1959): Plasma pressure is centrally peaked with $p \sim 1/\delta V^{\gamma} \sim R^{-20/3}$
- Melrose (1967): Plasma density is centrally peaked with $\langle n \rangle \sim 1/\delta V \sim R^{-4}$
- Farley et al. (1970): Turbulence causes strong inward particle pinch (radiation belts)
- Adriani et al. (2011): Discovery of geomagnetically trapped cosmic-ray antiprotons


- Dipole is simplest confinement field
- Naturally occurring high- β plasma ($\beta \sim 2$ in Jupiter)
- p and n_e strongly peaked

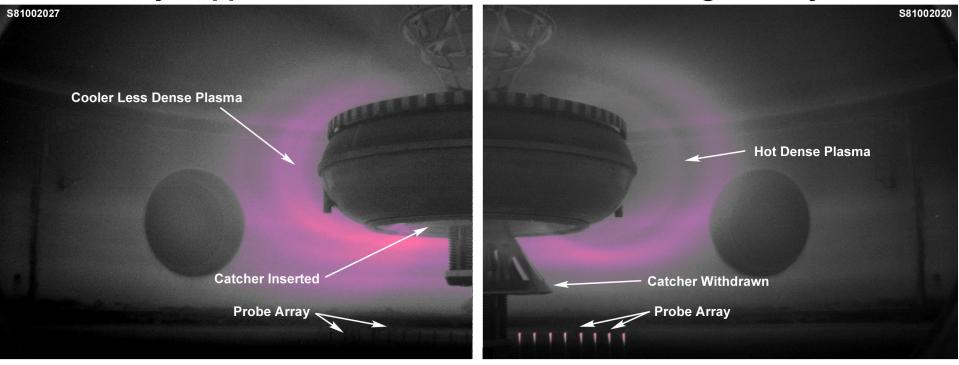
- Relevant to space science & fusion plasmas
- Hasegawa, [CPP&CF 1(1987)147]
 Can lead to advanced-fuel fusion power source


Magnetic topology determines equilibrium and stability

- Two basic toriodal magnetic topologies
 - Irrational flux surfaces, average well: tokamak, ...
 - Equilibrium: plasma pressure \leftrightarrow field pressure $\Rightarrow \beta < 0.1$
 - Low frequency drift modes balloon to outside
 - Closed field lines: Dipole,
 - Equilibrium: plasma pressure \Leftrightarrow field line tension $\Rightarrow \beta \sim 1$
 - Drift modes are Interchange-like
 - Plasma magnet arrangement
 - Plasma within coil set: tokamak, ...
 - Easy access to coils but divertor, disruption difficulty
 - Coil within plasma
 - Plasma easy to access, large flux expansion, good field utilization

Laboratory Dipole Experiments

The Levitated Dipole Experiment (LDX)


Unique properties of dipole field

- Coil inside of plasma
 - B~1/R³: Strong decay of field with radius
 - Field and plasma pressure fall off together leading to high average β
- Stability derives from plasma compressibility
 - MHD stability limit on pressure gradient
 Small plasma in large vacuum chamber
- No toroidal field: j_{||} =0 ⇒
 - No MHD kink drive
 - No neoclassical enhancement of transport

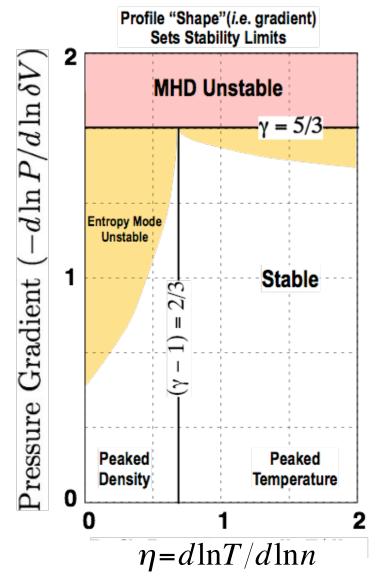
LDX: Floating coil can be supported or levitated

Mechanically Supported

Magnetically Levitated

- Observe ionization glow moves outwards with levitation.
 Profile determined by X-field transport.
- Supported mode: Losses to supports dominate X-field transport (mirror machine).

Main Experimental Results


- Low-frequency interchange instabilities dominate plasma dynamics
- Very high peak beta (> 50%) with levitation
- Turbulence drives plasma to very steep profiles and creates strong inward particle pinch
 - While Farley, Tomassian, Walt [*PRL* (1970)] were the first to observe the collisionless inward pinch in the magnetosphere
 - LDX was the first to clearly observe a strong inward turbulent pinch in a laboratory plasma

Stability: Dipoles exhibit both MHD and drift instability

• MHD stability
$$\nabla p < (\nabla p)_{crit}$$

$$-\frac{d\ln p}{d\ln\delta V} < \gamma \ \delta V = \oint d\ell/B, \ \gamma = 5/3$$

- Entropy mode drift-kinetic instability depends upon $\eta = \frac{n\nabla T}{T\nabla n}$
- Both MHD and entropy modes are flute-like.

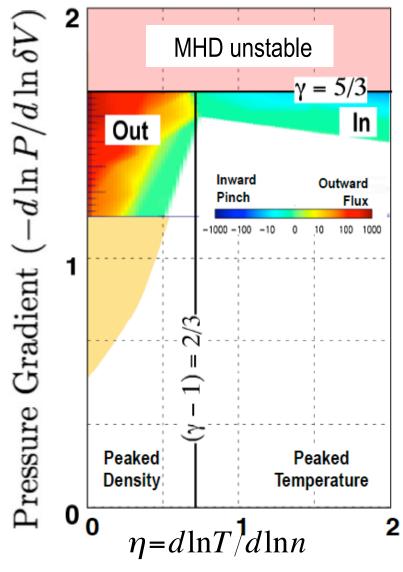
Simple pinch derivation:

- Assume turbulence frequency<< bounce, cyclotron frequency
- F-P eq. (turbulent equipartition) & conservation of $\mu \& j(= \oint v_{\parallel} ds)$

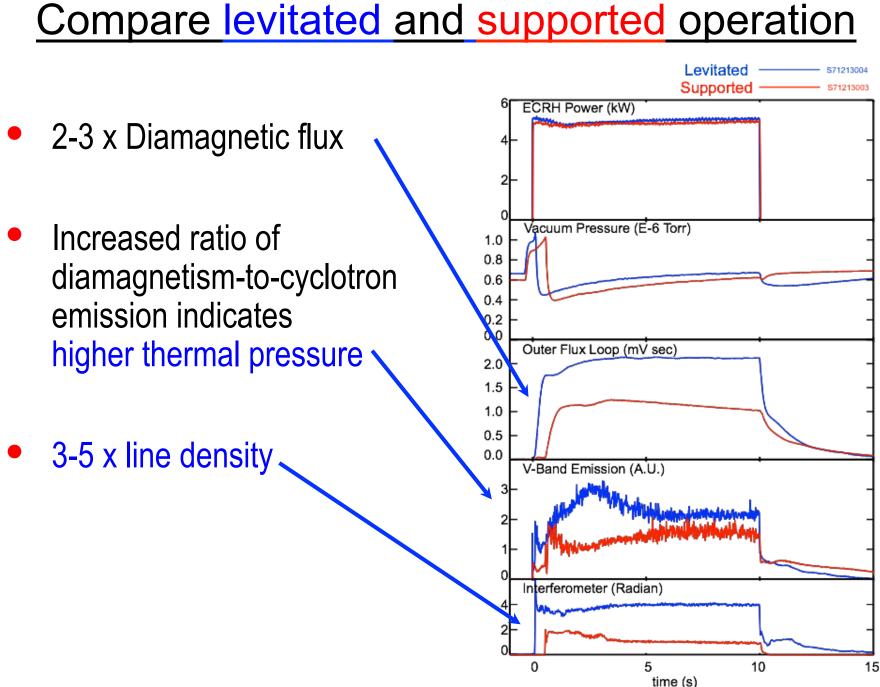
$$\frac{\partial}{\partial t} f = \frac{\partial \Gamma}{\partial \psi} \Big|_{\mu,j} \implies \Gamma(\mu,j) = -D_t \frac{\partial f}{\partial \psi} \Big|_{\mu,j}$$

• Velocity space integration: For constant D_t

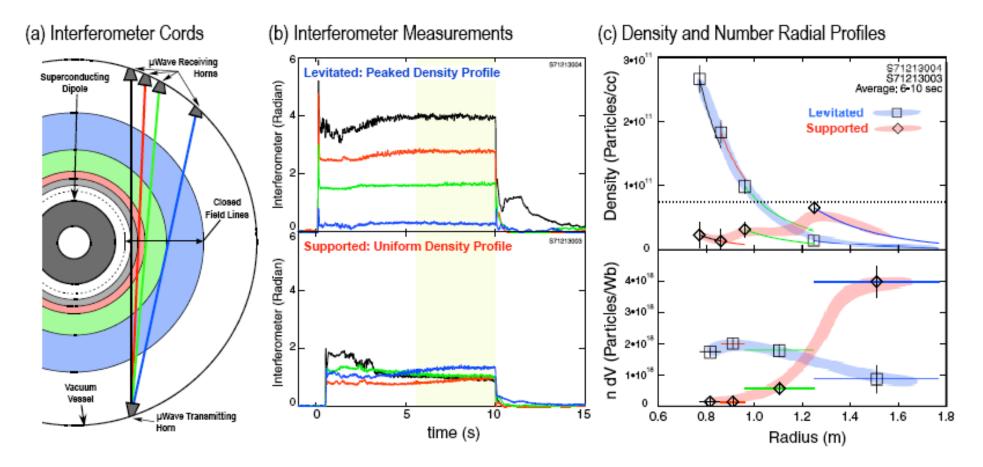
$$\Gamma = -D_{t0} \frac{\partial (n\delta V)}{\partial \psi} \Gamma_{S} = -D_{t0} \frac{\partial (p\delta V^{\gamma})}{\partial \psi} \qquad \delta V = \oint d\ell/B, \quad \gamma = 5/3$$


> Stationary states: $\Gamma, \Gamma_s \approx 0 \Rightarrow n_e \propto 1/\delta V, \ p \propto 1/\delta V^{\gamma}$

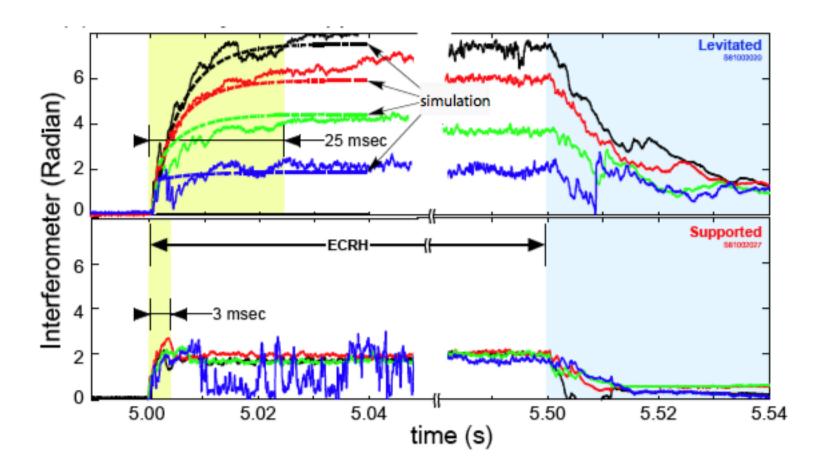
$$\succ \Gamma = -D_0 \frac{\partial (n\delta V)}{\partial \psi} = -\hat{D} \nabla n + n\hat{V}$$


<u>Gyrokinetic simulations (GS2) corroborate</u> <u>turbulent pinch</u>

When MHD is stable & entropy mode is unstable:


- For η >2/3 pinch inwards;
 - •Outwards energy flow accompanies inwards density pinch & visa versa.
 - LDX: internal heating, edge fueling yields η >2/3.
- •MHD instability will similarly create pinch [Kouznetsov, Freidberg, Kesner, 2007].

Kobayashi, Rogers, Dorland, PRL (2010)


<u>Multi-cord interferometer indicates strong density</u> <u>peaking during levitation</u>

Elimination of loss to supports
density pinch

Observed density evolution matches expectations

- D drives pinch $\Gamma = -D \frac{d(n\delta V)}{d\psi} \delta V = \oint dl/B$
 - $D = R^2 \langle E_{\phi}^2 \rangle \tau_{corr} \approx 0.047 V^2 / s$ (E ϕ , τ_{corr} from edge probes)
 - Probe measurements match pinch time of ~25 ms.

Pinch observed in tokamaks and stellarators

- Observations of a pinch
 - Stellarator LHD: Tanaka, *et al.*, [Fus. Sci. & Tech., **58** (2010) 70].
 - Tokamak DIII-D: L-mode: Baker and Rosenbluth, [PoP 5, (1998) 2936], Baker [PoP 9, 2002) 2675].
 - Stationary (pinched) density profiles have n_{max}/ n_{edge}>2
 - Tore Supra: Hoang et al, [PRL **90**(2003) 155002].
 - Cmod: "I-mode" observes L-mode (inwardly peaked) density with h-mode temperature. [Whyte et al., Nucl. Fusion **50** (2010)].
- Will pinch be operative in ITER?
- Tokamak/stellarator pinch is weaker than in dipole and more difficult to observe and to formulate.

Why is pinch particularly strong in a dipole?

- Pinch drives stationary profiles: $n_e \propto 1/\delta V$, $p \propto 1/\delta V^{\gamma} \delta V = \int dl/B$
 - Dipole: $B \propto 1/R^3 \Rightarrow n_e \propto 1/R^4$
 - Tokamak: $n_e \propto 1/q$
- Trapped particles drive pinch ** :
 - ⇒ All dipole particles effectively "trapped" (no toroidal streaming)
- Both MHD and drift frequency instabilities are flute-like

⇒ All particles equally effected

 \Rightarrow When $D = D(\lambda)$ must include D in integral $\Gamma = -\iint d\mu dj D^{\psi} \frac{\partial f}{\partial \psi}\Big|_{\mu, j}$

- In dipole pδV^γ ~ Const and particle pinch does not necessarily transport energy.
 - In tokamak with good curvature no MHD constraint on ∇p

& a particle pinch is accompanied by an energy outflow.


** Isichenko, Gruzinov, Diamond, PRL (1995) 4436.

For invariant profiles $\tau_{E} \& \tau_{P}$ set by edge physics • For $p \propto 1/\delta V^{\gamma}$, $E_{tot} = \frac{3}{2} p_{sol} R_{sol}^{3} (R_{sol}/R_{0})^{\gamma+2}$ $\tau_{E} = E_{tot}/P$ • For $n_{e} \propto 1/\delta V$ $N_{tot} = n_{sol} R_{sol}^{3} (R_{sol}/R_{0})$ $\tau_{P} = N_{tot}/S$

Dipole amplifies SOL density and pressure much like gas flow from a large volume through a small hole

- Confinement time ratio: $\frac{\tau_E}{\tau_P} \propto \frac{3}{2} (R_{sol}/R_0)^{\gamma+1} \approx 10-50$
- For invariant profiles energy and particle confinement set by SOL physics.
- $\Rightarrow \tau_E / \tau_P$ is large and depends only on geometric factors (i.e. magnetic flux expansion)

The next step for LDX was an ICRF upgrade

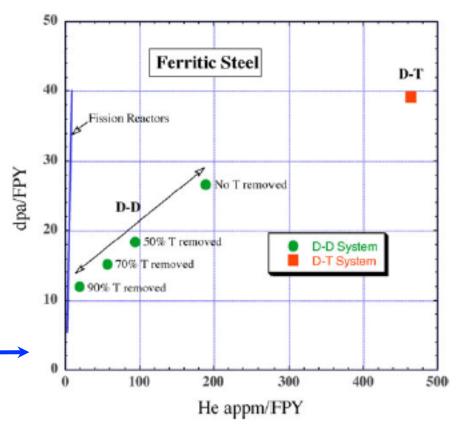
• Obtain fusion relevant plasma densities with thermal ions

 $\beta \sim 1$, n_e>10¹⁹ m⁻³, 500 eV ion thermal plasmas

• 1 MW HF transmitter is on-site will allow 200 kW absorbed power.

Heating scenario has been developed including full wave simulation: m=0 high field antenna heats with near field and fast & slow waves

Dipole is ideal for tritium-suppressed fusion


 DT has difficult issues relating to materials damage (swelling and DPA) from 14 MeV neutrons and to tritium breeding.

$$D+D \xrightarrow{\rightarrow} He^3 + n \\ \rightarrow T+p$$

DD cycle, removing secondary T, would ameliorate problem.

- Burn secondary ³He
 - T decays to ³He
- Requires $\tau_P << \tau_E$ for T removal
- Similarly $\tau_P << \tau_E$ for ash removal
- T-suppressed power source would reduce wall damage to fission levels
- Dipole has $\tau_P << \tau_E$, high β ...

Kesner et al, Nuc Fus 44 (2004) 193

Sawan, Zinkle, Sheffield FED 61-62 (2002)

Laboratory Dipole Research

- Four laboratory dipole devices intensively studied during the past decade: Columbia University, MIT, University of Tokyo
- Demonstrated the plasma physics of the magnetosphere appears in the laboratory
 - Very high beta (>50%)
 - 2D dynamics
 - large-scale interchange turbulence
- **Directly observed the turbulent inward pinch**, which drives centrallypeaked density and temperature profiles
- Important consequence of the stationary profiles: Energy and particle confinement is set by SOL physics.
- Energy confinement is longer than particle confinement, making possible advanced fusion fuel cycles.