

Massachusetts Institute of Technology

High Temperature Superconducting Magnets for Fusion

Joseph V. Minervini

Massachusetts Institute of Technology Plasma Science and Fusion Center Cambridge, MA, USA

Fusion Power Associates Annual Meeting Hyatt Regency Washington On Capitol Hill December 16-17, 2015

Contents

- Superconductivity
 - Low Temperature Superconductors LTS
 - > High Temperature Superconductors (HTS)
- Present Status of HTS Production
- HTS for High Field Tokamaks
- Present Status of HTS Development
 - Conductor
 - > Coils
 - > Joints
- HTS for Other Fusion Experiments
- Summary

Status of Practical Superconductor Technology-1

14117

Superconductor Critical Surface (J, B, T)*

* And sometimes train (ϵ)

PSFC

Status of Practical Superconductor Technology-2

	Material	Т _с [К]	µ₀Hc² [tesla]	
	NbTi	9.8	10.5 (4.2 K)	Superconducting filament Superconducting filament Aunder of filament, Approx. 13.000 Filament clameter: Approx. 3µm
LIS	Nb ₃ Sn	18.2	15.3 (4.2 K)	
MTS	MgB ₂	39	>15	
HTS	Bi ₂ Sr ₂ Ca ₂ Cu ₃ O _{10-x} (Bi-2223)	110	108	
	Bi ₂ Sr ₂ CaCu ₂ O _{8-x} (Bi-2212)	110	108	
	REBa2Cu3O7-x (REBCO)	93	150	Copper Stabilizer- Silver Overlayer (RE)BCD - HTS (epitaxial) Buffer Stack 1/2 µm - 1/2 µm - 1/3 µm 2/2 µm - 1/3 µm -

YBCO <u>High Temperature</u> Superconductor is an excellent High Field Superconductor

- HTS performance is already good enough for use in fusion magnets and continues to advance rapidly.
- HTS provides high magnet stability and operating margins at T>20K.
- Reduces probability for spontaneous quench.
- Higher T operation increases refrigeration efficiency and nuclear heating handling.

HTS Makes Much <u>Higher Magnetic Fields</u> Accessible at <u>Higher Temperatures</u>

YBCO Tape (2nd Generation-HTS)

The make up of a second-generation superconducting wire, showing the multiple layers required to achieve good conductivity in the YBCO. Layers of copper (Cu) protect against transient resistive voltages, while layers of lanthanum manganate (LMO) and two types of MgO form substrates for growing single-crystal YBCO films.

REBCO is Commercially Produced in at Least 6 Countries

Company	Country
AMSC	USA
SuperPower*	USA
STI	USA
Fujikura	Japan
Sunam	Korea
SuperOx**	Russia
BEST	Germany

• SuperPower is owned by Furukawa of Japan

** Part of SuperOx production process is performed in Japan

I_c(B,T) Typical Data

1411

PSFC

All Rights Reserved. Copyright SuperPower, Inc. 2015

B || c (T)

Engineering Current Density Improved Several Fold by Addition of Artificial Nano-Pinning Centers

UNIVERSITY of HOUSTON

J_e of 20% Zr-added tapes 3X – 4X higher than SuperPower's production AP wire at 40 K

PSFC

Presented by C. Senatore at the 1st Workshop on Accelerator Magnets in HTS,

21-23 May 2014, Hamburg, Germany

T_CSUH

Very High Field Magnet Technology Will Be Demonstrated at 32 T

PSFC

26.5 T All HTS (REBCO) Magnet Has Already Been Demonstrated

S. Hahn, J.M. Kim, et al. NHMFL, FSU, SUNAM, MIT

1411

PSFC

26 Double Pancakes

MIT is Building an HTS Test Solenoid

|||;;

PSFC

- •1000 turn double pancake construction
- •10 cm central bore diameter
- •20 cm outer diameter
- •12 mm X 0.106 mm HTS Tape (GdBCO)
- •1.05 T on axis at 77 K at 120 A (Ic = 500 A sf)
- •6.35 T on axis at 4.2 K at 720 A (Ic = 1750 A sf)
- A No-Insulation (NI) design will be tested
- Immunity to quench
- No issues with insulation failure
- High turn-to-turn strength
- Coil has been fabricated and is being tested

The ARC conceptual design: **Fusion power at small size = Power density**

Coil Assembly Concept

PSEC

Auxiliary part detail

 Machine would operate ~20 K and allow resistive joints

PSEC Reactor Design Based on Aries-I

I'lii PSFC

Top Mechanical Support: Triple Dovetail

PSEC

Acceptable Stress Levels in the Structure at 20 T

Structure: 316LN

Stress in most of the structure: less than 500 MPa Limit in CICC: 680 MPa

Critical points: inter-coil structures, auxiliary dovetail (less than 700 MPa)

DSEC Electrical Joint: Resistive Terminations Linked with "Jumper" Plate

Electrical Joint Design: Section of One Joint

DSEC

Voltage vs. Current Results for Single Tapes & Cable Experiment

Cable: current capacity larger than 3 kA

Twisted Stack Tape Conductor (TSTC) Developed at MIT

TSTC basic conductors to fabricate multi-stage twisted cable.

Large TSTC Conductor Current Capacity

Estimated currents and current densities of various conductors

Basic cable : 40-tapes, 4 mm width, 0.1 mm YBCO. Tape critical current : 170 A at 20 T and 4.2 K

I'lii PSFC

l'Iiiī

PSFC

3.0-m HTS ST-FNSF design

The ST-FNSF design is only feasible with *HTS TF and PF windings*. LTS TF winding Cd is too low. Same condition for most of the PF coils.

MIT Large TSTC Conductor Highlighting OPPL the 12 sub-cable Arrangement

This cable arrangement should work even adding turn-to-turn insulation.

12-sub-cable conductor picture taken from Ziad Melhem presentation

A new stellarator design with straight back legs offers tokamak style vertical maintenance

The design was developed using LTS winding. Higher Cd HTS windings offer increased space for gaps, structural support, inboard shielding or reducing distance to plasma.

PLASMA PHYSICS

What are the winding limitations of HTS – if any?

The Type A and B modular coils legs are straight but the inboard section is not. Both Nb₃Sn and HTS windings were defined with and without a TF background field.

MC's developed using an engineering supplied winding surface

MC windings developed assuming 50 MA/m^2 overall CD with no background TF field.

Winding CD	defined I	by specified	coil size
Winding g	eom. (m)	overall CD	
<u>Depth</u>	Width	(MA/m^2)	
0.423	0.847	50.0	
0.423	0.847	44.0	
0.423	0.847	42.6	

Winding CD define	ed by specified coil size
-------------------	---------------------------

Winding ge	om. (m)	overall CD	
Depth	<u>Width</u>	(MA/m^2)	
0.847	0.847	24.9	
0.847	0.847	22.0	
0.847	0.847	21.3	

SUMMARY

- Present commercial production of HTS superconductor in the form of REBCO tape is sufficiently advanced to start using it for building small, high field coils now.
- Using even today's performance, advanced fusion reactors can be designed now using this material.
- The performance improvement curve is very steep, easing the reactor designers job for future production.
- REBCO changes the whole reactor design paradigm. We should take advantage of its high field and high temperature performance to design a high field fusion reactor.
- HTS can be used for all magnetic confinement configurations and should be considered for stellarators and helical machines, as well as other, small scale plasma physics experiments.

Plasma Science & Fusion Center

Plasma Science and Fusion Center Massachusetts Insitute of Technology

psfc.mit.edu

Swiss Plasma Center-EPFL

l'lii T

PSFC

Karlsruhe Institute of Technology

ENEA - TRATOS design for 20 kA – class cable

PSFC

Hii

