PHYSICS OF BURNING PLASMAS:

PHYSICS INACCESSIBLE TO PRESENT FACILITIES

FIRE Physics Workshop May 2000

F. Perkins and N. Sauthoff Princeton Plasma Physics Laboratory

OUTLINE

• Introduction

- Three Classes of Burning Plasma Physics inaccessable to contemporary tokamak facilities
 - **1. Effects of energetic** α **-particles**
 - 2. Self-heating
 - **3.** Physics of reactor-scale plasmas
- Examples of inaccessable burning plasma physics
- Conclusions

INTRODUCTION

• A fusion reactor confining a burning plasma is the ultimate goal of the fusion energy sciences program.

- Design of a reactor must rest on robust experimental demonstrations of its physics basis and operational scenarios.
- Three questions arise:
 - 1. How do we extrapolate the physics processes dominant in contemporary tokamaks to a reactor-scale facility?
 - 2. What new physics will be encountered in a reactor?
 - **3.** What capabilities do candidate burning plasma experiments have to address both extrapolations and these new physics processes?
- This talk addresses Question 2: What must we learn from burning plasma experiments ?

THREE ELEMENTS OF BURNING PLASMA PHYSICS

1. Energetic Particle Physics arising from 3.5 Mev α -particles

- Heats electrons; eliminates hot ion modes relying on $T_i >> T_e$.
- Drives Alfven Eigenmodes towards instability.
- Interacts with (m,n) = (1,1) modes sawteeth & fishbones
- 2. Self-Heating and Thermal stability
 - Interacts with core and edge transport barriers thermal stability
 - Self-consistency of steady-state plasmas
 - Simulation in Upgrades via auxiliary heating power controlled by DD neutrons ?
- **3. Reactor-scale physics sets many design requirements**
 - Near balance of α -particle heating with transport loss determines device scale
 - Scale affects balance of many processes with diverse scalings

PHYSICS INACCESSABLE TO PRESENT FACILITIES: α-PARTICLES AND SELF-HEATING / THERMAL STABILITY

1. Energetic Particle physics is affected by scale: $\tau_E >> \tau_s$.

• Smaller driving source at reactor scale $\frac{n_{\text{fast}}}{n} = \left(\frac{3T}{E_{\text{fast}}}\right)\left(\frac{s}{E}\right)$

• TAE mode numbers are higher n 10 ; turbulent modes??

- 2. Self-heating and thermal stability
 - Energy confinement scaling results in relation for fusion power produced by an ignited, thermally-stable plasma

 P_{fus} n³(H_H)⁷d^{3.5} d=n_Tn_D/n_e²

- Fusion power controlled by density but very sensitive to confinement multiplier
- How fast can core density and, transport barriers change?

PHYSICS INACCESSABLE TO PRESENT FACILITIES: DISRUPTIONS AND β-LIMIT

3. Disruptions lead to vaporization of divertor chamber and runaways

- Thermal quench energy impulse W/aR factor-of-15 larger than JET
- Large source of impurities for subsequent current quench stage
- Runaway avalanche growth e-foldings $I_p(I_{Alfven} \ln)^{-1} > 25.$
- **4. Operational** β-limit:
 - Controlled by Neoclassical Tearing Modes (inductive tokamak)?
 - In a reactor time scales are long
 - Effectiveness of ECCD control of NTMs on ~ 50s growth time
 - Sawteeth (and hence seed islands) are infrequent ~100s

PHYSICS INACCESSABLE TO PRESENT FACILITIES: CONFINEMENT ISSUES

5. Core confinement scaling

- Value of ρ^{*} is a factor-of-5 less than JET
- Will "almost gyroBohm" scaling continue to hold?
- Relative importance of "core" versus "pedestal" energy content

6. H-mode power threshold

- Factor-of-2 uncertainty for reactor-scale devices
- Data scatter prevents present devices from determining size-scaling
- Theory presently unable to predict size scaling
- Investigation in a reactor-scale plasma is needed.

PHYSICS INACCESSABLE TO PRESENT FACILITIES: CORE-EDGE INTEGRATION: POWER AND PARTICLE CONTROL

7. Power dispersal:

- Present tokamak discharges with ITER $\beta, \, \nu^*$ have attached divertors
- Integrated demonstration of detached divertors with core confinement at reactor-like β , ν^* not possible
- For a reactor, higher T_e just inside SOL inhibits MARFES
- Predictive 2D divertor simulations need perpendicular diffusivity

8. Core fuelling by inside pellet launch combined with high baffling of a reactor-scale facility controls main chamber neutral pressure

PHYSICS INACCESSABLE TO PRESENT FACILITIES: CORE-EDGE INTEGRATION: H–MODE AND DENSITY-LIMITS

- 9. While ITER Demonstration Discharges (with ITER-like β , ν^*) in present devices have transport losses appreciably above the H-mode power threshold, a reactor-scale device will operate close to the power threshold
 - Transport losses scale differently from power threshold
 - Will the full H-mode confinement be realized?
- 10. ITER Demonstration Discharges have a density well below the Greenwald limit wheras a reactor will operate close the Greenwald density.
 - Density scaling at constant β , ν^* differs from Greenwald
- 11. In general, an integrated demonstration of a reactor-scale core and edge physics is not possible in contemporary facilities.

STEADY-STATE OPERATION

- 1. High bootstrap fraction requires relatively high- q and a reverse-shear q-profile.
 - To achieve desired $\beta > 3\%$, plasmas must operate in the "wall-stabilized" regime where resistive wall modes arise.
 - Resistive wall modes stabilized by rotation or feedback
 - Presently, wall-stabilized plasmas exhibit a spontaneous spin-down that prevents rotation from providing the needed stabilization
- 2. It follows that steady-state burning plasma experiments must have active n=1 feedback coils and a source of rotation drive to determine design requirements for a steady-state reactor.
 - NBI beam energy increases and driven rotation frequency decreases in a reactor-scale device.

CONCLUSIONS

- 1. Reactor-scale burning plasma physics has features which are inaccessable to investigation in present facilities*.
 - The experimental physics of a reactor scale device will be original.
- 2. Design of a demonstration power reactor must rest on experimental demonstration in a burning plasma facility of its physics basis and operational modes.
- 3. To progress towards the fusion power goal, we must

"Burn to Learn"

*A more detailed account appears in Chapter 9, *ITER Physics Basis*