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New HTS superconductors + integrated high-B physics 
enable an innovative strategic vision for ���

US leadership in accelerated fusion energy development	


G-2 Integrated steady-state & 
boundary in burning plasma	


G-4 Control at high Qp	


G-5 Predict & avoid damaging���
 off-normal events	


G-7 RF launchers & coupling	


G-9 Tame PMI & heat exhaust 	


G-10-15 Integrated fusion 
materials & components	


     High-B physics:	

-  High gain at small size	

-  Margin to operational 

limits & disruptions	

-  Effective RF CD & 

innovative launchers for 
steady-state	


-  High pressure boundary 
& PMI control	


Demountable HTS coils & 
Modular replacement	


G-8 High-B magnets	

Gaps	
 HTS high Bpeak> 20 T 	


Superconductor coils	


Steady-state 	

Compact	


FNSF/Pilot	


Next 10 years	

HTS magnet R&D	


HTS joints &	

Blanket R&D	
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A strategic plan should accelerate fusion development by 
considering critical knowledge gained in past decade	


1.  Large size à risks in cost and schedule���
ITER successful fusion gain > 20 years away���
 “At some point delay is equivalent to failure” ���
FESAC 2007 Gaps report5 ���
	


2. 	
Superconductors evolved (G-8) ���
HTS1 tapes allow ~ double B field ���
à Steady-state, high gain small devices ���
	


3. Boundary physics evolved (G-9)	

a)   ELMs disallowed in ITER à ���

Transients disallowed in FNSF/Pilot/DEMO	

b)  Power exhaust could threaten fusion viability���

& does not favor large size.	

c)   Quiescent high-field SOL à locate RF launchers 	


Small + ���
High-B +���
Superconductor	

= ���
Margin to 
disruptions + 
Steady-state +	

Reduced cost	

& schedule 	


Evolved���
Strategy	


Strategic	

Input	


Key Observations	
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Size has risk: Lesson from fission & ITER���
Minimize volume of first nuclear devices to assure 

timely development of physics and technology	


•  JET ~ 100 m3 took < 5 years to construct	


•  FIRE B~10T burned at right size, but 
pulsed due to copper coils	


Design'parameter'
Shippingport2*
“Pilot”*Fission*
Plant*ca.*1954*

ITER3*
“Pilot”*Fusion*
Plant*ca.*2006*

Scale*factor*
ITER/Shippingport!

Pthermal'(MW)' 236!! 500!! x*2.5!
Core'volume'(m3)' 60!! ~1600!

(shield!+!TF)! x*27*

Cost'(2012'US'B$)' 0.6! ~!30! x*50*
Cost'/'Core'volume'
(M$/m3)' 10* ~*18* ~*2*
Construction'time'to'
“burn”'(years)' 3.3* ~*28*** x*8*
!

VFIRE
VITER

~ 1
30

Cost &���
schedule	

G-8	

G10-15	




4	
FESAC-SP Whyte	


Superconductors evolved Astonishing critical current of new 
high-temperature superconductors (HTS) at Bpeak>20 T 

provides possibility to ~double loss-free B field  	


•  Sub-cooled tapes at���
~20 K provides 
operational margin 
to superconductor1.	


•  Limitation becomes 
the structural stress 
rather than 
superconductor.	


	

•  Tapes allow joints.	

	


G-8	
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Known physics scaling + Superconductor Bpeak > 20 T à 
High-gain burning plasma compact size & Steady state!	


 
nT τ E 

βNH
q*
2 R1.3B3

  

Pfusion
Swall


βN

22

q*
2 RB4

ARC /w HTS 
superconductor	


Gain	
 Power	

density	


FIRE12	
 ARC10,14	


R (m)	
 2.14	
 3.2	


Bo (T)	
 10	
 9.2	


Qp	
 >10	
 >10	


Steady-	

state	
 No	
 Yes	


Tritium	

breeding	
 No	
 Yes	


Qelectric	
 0	
 ~ 4	


FIRE /w ���
copper coils	


To scale	


Cost &���
schedule	

G-2	

G-4	


$∝ R3
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B0~10 T, compact SC HTS tokamak enables more realistic ���
high-Qp steady-state option by providing margin ���
to intrinsic disruption, control & operation limits	


Steady-	

state���

tokamak	


B0���
(T)	


R	

(m)	


Pelec	

(MW)	
 Qp	


Pn	

S	


MW	

m2	


ARIES-
AT6���

SC-NbSn	

5.8	
 5.2	
 +1000	
 44	
 3.3	
 2.5	


ARC14���

SC-HTS	
 9.2	
 3.3	
 + 230	
 14	
 2.2	
 1.2 	


FNSF-
AT4,7	


Copper	

5.5 	
 2.7	
 - 600	
 2.6	
 1.6	
 1	


Nuclear	

mission	


Capital & Operating	

Costs / Economics	


Cost &	

Schedule���
G-2 G-4	

G-5 G-8	


Disruption damage���
relative to ITER 	


Pn

 

Wth / S
Wth / S( )ITER

 
nT τ E 

βNH
q*
2 R1.3B3

Operational limit diagram	


Electrical cost13 ���
~ 250-500 M$/FPY	
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Heat exhaust critical to the viability of all FNSF/Pilot designs ���
 New edge physics favors small size + high gain à high B	


Pheat ~ Pneutron
1+ 5 /Qp( )

4
~ R2

q// ~
PheatB
R

λq ~
1
Bp

ADX	


Innovative 
solutions at 

reactor-
matched	


B, q//	


G-9	


LaBombard	


Evolved ���
edge ���
physics	


q// ~ R B 1+ 5 /Qp( )

Neutron	

mission	


US Leadership opportunity	


Near-term 	

Edge physics	


FNSF design	

challenge	


 
nT τ E 

βNH
q95
2 R1.3B3

Ref. 9	
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Efficient RF current drive is synergistic with high-B &���
critical to developing robust steady-state in tokamaks	


•  Compels near-term research in high-field & inside launch RF.	

	


Higher LHCD	

efficiency at high field	


Quiescent PMI ���
high-field-side RF ���

 launchers 	


n=2x1020	


Control current profile ���
at small R, T~12 keV ���
for optimized AT13,14	


ICD/I ~ 37%  &  Qp ~ 15	


ARC	


ARC	
η20 (A/W/m2)	


G-2	

G-7	


R. Parker	


US Leadership opportunity	


ω ce

ω pe
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FNSF mission favors demountable coils for modular replacement���
 Finite resistance HTS joints à minimal Pcoil à  Pilot option ���

US Leadership opportunity in configuration & maintainability	


Copper FNSF-ST8���
Pcoil~400 MW	


Copper FNSF-AT7 ���
Coil Pcoil~600 MW	


ARC: Resistive joints /w	

HTS superconductors11���

Coil Pcoil~ 1 MW	


Conceptual FNSF designs	

R/a=3.5	
R/a=1.7	
 R/a=3	


G-8	

G-10	

G-13	

G-15	
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     High-B physics:	

-  High gain at small size	

-  Margin to operational 

limits & disruptions	

-  Effective RF CD & 

innovative launchers for 
steady-state	


-  High pressure boundary 
& PMI control	


New HTS superconductors + integrated high-B physics 
enable an innovative strategic vision for ���

US leadership in accelerated fusion energy development	


G-2 Integrated steady-state & 
boundary in burning plasma	


G-4 Control at high Qp	


G-5 Predict & avoid damaging���
 off-normal events	


G-7 RF launchers & coupling	


G-9 Tame PMI & heat exhaust 	


G-10-15 Integrated fusion 
materials & components	


Demountable HTS coils & 
Modular replacement	


G-8 High-B magnets	

Gaps	
 HTS high Bpeak> 20 T 	


Superconductor coils	


Steady-state 	

Compact	


FNSF/Pilot	


Next 10 years	

HTS magnet R&D	


HTS joints &	

Blanket R&D	


Minervini: HTS magnets	


LaBombard	

PMI & heat	

exhaust	


Parker	

RF current	

drive	


ADX	
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Backup materials	
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Foundations	
 Year 1-3	
 Year 4-7	
 Year 8-10	
 FNSF options	


Transport	
 H98 OK, no X-point MARFE	
 Disruptivity  vs. 
performance���
assessment	
Stability	
 ELM-free 

stationary ped.	


Wave-particle	
 Design HFS launch: 
LHCD & ICRF	


Install, assess 
PMI & coupling	


High ηCD, j 
profile control	


Valid RF model 
& launchers	


PMI	
 Design divertors	

PMI diagnostics	


Install divertors, 
q// vs. B physics	


Integrated q// 
PMI solution @ 

high pressure	


Heat exhaust/
PMI solutions	

Solid vs liquid	


Long Pulse	


Plasma sustainment	
 CD efficiency  
f(B) on HFS	


Disruption rates 
away from limits	


Current control 
toolkit	


B-field sustainment	
 Prototype HTS 
conductor & joints	


Wound coils /w 
joints, HEP 	


B>20 T jointed 
coil demo	


Cu vs. HTS	

Pilot?	


Materials	
 Erosion resistance 
high-Z PFC	


Study: modular 
replacement	


High-T, high-Z, 
low Eion divertor	


Modular 
replacement	


National  ADX and  HTS magnet and ADX 
initiatives are aligned and timely to the OFES ���

Burning Plasma Science mission 	


~17 M$/y	
 ~4 M$/y + demo coil	
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ADX provides a critically needed ���
near-term, small-scale step into the ITER/FNSF ���

heat exhaust & PMI parameter range  	


q// ~ PheatB / Rqθ ~ PheatBθ / R

pthermal (MPa)

// physics	
Projected heat flux	


Atomic &���
PMI	


physics	
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Heat exhaust critical to the viability of all FNSF/Pilot designs ���
 New edge physics favors small size + high gain à high field	


Pheat ~ Pneutron
1+ 5 /Qp( )

4
~ R2

q// ~
PheatB
R

λq ~
1
Bp

ADX	


Innovative 
solutions at 

reactor-
matched	


B, q//	


G-9	


LaBombard	


Evolved ���
edge ���
physics	


q// ~ R B 1+ 5 /Qp( )

Neutron	

mission	


US Leadership opportunity	


Near-term 	

Edge physics	


FNSF design	

challenge	


 
nT τ E 

βNH
q95
2 R1.3B3

Ref. 9	


q// ~
1+ 5 /Qp( )
B1.3
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ARC:  9 Tesla “JET”, 250 MW net electricity���
Steady-state tokamak far from disruptive limits 	


Nuclear	

Fusion Power	
 525 MW	


Blanket & Depth	
 Liquid FLiBe > 0.8 m 	

ηthermal  /  Tblanket	
 ~ 0.5  /  ~ 900 K	


Tritium breeding ratio	
 1.11	

Plasma core	


R  /  a   /  𝜅	
 3.3 m /  1.1 m  / 1.8	

B0	
 9.2 T 	


q95   /  qmin	
  7.2   /    ~ 3	

𝛽N  /   H89  	
 2.59   /   2.7	


G89 : 𝛽N  H98  / q95
2	
 ~ 0.15	


Greenwald fraction	
 ~0.6	

RF current sustainment	


CD Efficiency 	
 > 0.4  1020 A/W/m2 	

Bootstrap fraction	
 63%	


Margin to limits!	

Scenario already achieved	

In present tokamaks	
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ARC exploits two features of new SC:���
 Bcoil,max~23 T  + Tapes used for joints	


1. Support ring,  2. Top TF leg ���
4. Mechanical joint 6. Epoxy 
enforcement 7. Electrical joint	


Peak stress ~ 0.75 GPa	

~30% margin for 316SS LN	
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ARC exploits two features of new SC:���
 Bcoil,max~23 T  + Tapes used for joints	


1. Support ring,  2. Top TF leg ���
4. Mechanical joint 6. Epoxy 
enforcement 7. Electrical joint	


“Comb-style” TF resistive 
joints are expected to lead ���
to ~ 1 MWelectric dissipation	
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HTS high-field allows FNSF/Pilot fusion & 
nuclear requirements with a modest integrated 

physics gain G89 already achieved in AT plasmas 	


Sips IAEA 2005, Zarnstorff 
Demo workshop 2012 	


FNSF-���
AT4	


ARIES-	

AT4	


ARC	


 
nT τ E 

βNH
q95
2 R1.3B3
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B~10 T, SC compact tokamak provides realistic ���
high-gain steady-state option far from ���

intrinsic operating and disruptive limits	

Nuclear &	

Electricity	


Power���
exhaust	


Steady-state &���
 Disruptions	


Capital & Operating	

Costs	


Violation or within 10% ���
of intrinsic limits:���

fbs=1, 𝜅 < 5.4/A, no-wall βN, ���
kink q*~2, density limit fGr =1	


	


Qp < 5  à excess relative���
heat loading per neutron	


Electrical cost ���
~ 500 M$/FPY	


Cost &	

Schedule���
G-2 G-4	

G-5 G-8	


Steady-	

state���

tokamak	


B���
(T)	


R	

(m)	


Pelec	

(MW)	


Pf	

(MW)	


Pn / S ���
(MWm-2)	
 Qp	


Pheat / 
4Pn	


fBS	
 𝜅	
 βN	
 q* 	
 fGr	


ARC ���
SC-HTS	
 9.2	
 3.3	
 230	
 525	
 2.2	
 14	
 1.3	
 0.63	
 1.8	
 2.6	
 4.8	
 0.65	


ARIES
-AT���

SC-NbSn	

5.8	
 5.2	
 1000	
 1760	
 3.3	
 44	
 1.1	
 0.92	
 2.2	
 5.4	
 2.1	
 0.95	


FNSF-
AT	


Copper	

5.5 	
 2.7	
 -600	
 230	
 1.6	
 2.6	
 2.9	
 0.74	
 2.3	
 3.7	
 2.8	
 0.63	
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ACCOME has optimized large advantages of HFS-
LHCD + poloidal launch location near X-point	


n// accessible	
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Optimized CD efficiency leads to substantial 
control of AT current profile below no-wall βN limit	
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HFS-LHCD+ high B: Excellent penetration at  
Lawson criterion minimum <T>~12 keV, ���

~ doubled CD efficiency to standard scenarios	


pth~ 0.8 MPa	


0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

10 15 20
Maximum B on coil, Bcoil, max (T)

10 15 20 10 15 20 10 15 20

0.2

r/
a 

 
 η

20
 a

t m
in

. r
/a

 

(a)  ε=0.33    〈T〉=12 keV

HFS launch

LFS launch

(b)  ε=0.33    〈T〉=18 keV (c)  ε=0.25    〈T〉=12 keV (d)  ε=0.45    〈T〉=12 keV

LHCD windows:
          LFS launch          

          HFS launch

B0 (T) 5 10 5 10 5 10 5 2.5 
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Small scale + demounting has 
surprising  synergistic benefits:���

Reduced volume à ���
reduce cool/heat time to ~2-3 days ���

of structure���
 à Modular maintenance 	


A single, module is only 
replaced unit ���
(vacuum vessel + PFCs +	

Built-in test stations 
integrated off-site)	
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Small scale à Modular VV à ���
Low-risk immersion liquid blanket ���

(FLiBe) for FNSF	


FLiBe	


Tritium Breeding Ratio: 1.14���
���
Eliminate blanket solid waste	

	

No “blanket” DPA limit	
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FLiBe provides outstanding heat removal 
capabilities at high T à thermal efficiency	
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Lessons from ARC..	

•  Is NOT that ARC is the ultimate, best fusion reactor design..	


•  Or that every detail of ARC is settled and easily done…	


•  ARC and it innovations was the result of ~dozen MIT students 
working for a semester+ , showing that it was feasible to produce high 
gain, SS reactor at JET size	


•  The real lesson of ARC is that when you change the most fundamental 
aspects of your MAGNETIC fusion device, i.e. scale, B strength and 
coil configuration, you also fundamentally change the design options 
and solutions open to you…	



