

A strategic plan should accelerate fusion development by considering critical knowledge gained in past decade

Key Observations

1. Large size → risks in cost and schedule ITER successful fusion gain > 20 years away

"At some point delay is equivalent to failure" FESAC 2007 Gaps report⁵

2. Superconductors evolved (G-8) HTS¹ tapes allow ~ double B field → Steady-state, high gain <u>small</u> devices

3. Boundary physics evolved (G-9)

- a) ELMs disallowed in ITER → Transients disallowed in FNSF/Pilot/DEMO
- b) Power exhaust could threaten fusion viability & does <u>not</u> favor large size.
- c) Quiescent high-field SOL \rightarrow locate RF launchers

Cost & schedule *G*-8 *G10-15*

Size has risk: Lesson from fission & ITER Minimize volume of first nuclear devices to assure timely development of physics and technology

Design parameter	Shippingport ² "Pilot" Fission Plant ca. 1954	ITER ³ "Pilot" Fusion Plant ca. 2006	Scale factor ITER/Shippingport	
P _{thermal} (MW)	236	500	x 2.5	
Core volume (m ³)	60	~1600 (shield + TF)	x 27	
Cost (2012 US B\$)	0.6	~ 30	x 50	
Cost / Core volume (M\$/m³)	10	~ 18	~ 2	
<i>Construction time to "burn" (years)</i>	3.3	~ 28	x 8	

- JET ~ 100 m³ took < 5 years to construct
- FIRE B~10T burned at right size, but • pulsed due to copper coils

FESAC-SP Whyte

Superconductors evolved Astonishing critical current of new high-temperature superconductors (HTS) at B_{peak}>20 T provides possibility to ~double loss-free B field

- Sub-cooled tapes at ~20 K provides operational margin to superconductor¹.
- Limitation becomes the structural stress rather than superconductor.
- Tapes allow joints.

4

DST(

Cost &
ScheduleB₀~10 T, compact SC HTS tokamak enables more realisticG-2 G-4
G-5 G-8high-Q_p steady-state option by providing margin
to intrinsic disruption, control & operation limits

Heat exhaust critical to the viability of all FNSF/Pilot designs New edge physics favors small size + high gain → high B

G-2 G-7 Efficient RF current drive is synergistic with high-B & critical to developing robust steady-state in tokamaks

• Compels near-term research in high-field & inside launch RF.

US Leadership opportunity

G-8
G-10FNSF mission favors demountable coils for modular replacementG-13
G-15Finite resistance HTS joints \rightarrow minimal $P_{coil} \rightarrow$ Pilot optionUS Leadership opportunity in configuration & maintainability

Conceptual FNSF designs

R/a=1.7

R/a=3.5

Copper FNSF-AT⁷ Coil P_{coil}~600 MW

ARC: Resistive joints /w HTS superconductors¹¹ Coil P_{coil}~ 1 MW

Backup materials

References

ÞSFC

- 1. "Engineering critical current vs. applied magnetic field," P.J. LEE Florida State University, National High Magnetic Field Laboratory http://fs.magnet.fsu.edu/~lee/plot/plot.htm_
- 2. "Shippingport Atomic Power Station" Historic American Engineering Record, Dep. Interior, Philadelphia PA 19106 Report HAER No. PA-81
- "ITER funding profile" *http://fire.pppl.gov/#NewsSection*, September 2012 US cost estimate of 3.1 B\$ as 9% partner. ITER cost ~ 3.1 B\$ / 9% ~ 30 B\$
- 4. V. Chan, et al. "A fusion development facility on the critical path to fusion energy," Nucl. Fusion **51** 083019 (2011).
- 5. "Priorities, Gaps and Opportunities: Towards a long-range strategic plan for magnetic fusion energy," FESAC report, M. Greenwald chair, Oct. 2007
- 6. F. Najmabadi, et al. "The ARIES-AT advanced tokamak, Advanced technology fusion power plant," Fus. Eng. Des. 80 3 (2006).
- A.M. Garofalo, et al. "A fast-track path to DEMO enabled by ITER and FNSF-AT," IAEA Fusion Energy Conference, FTP/P7-35 San Diego, CA (2012) (Note: FNSF-AT version shown is with ECCD only)
- 8. J. Menard, et al. "Studies of ST-FNSF mission and performance dependence on device size," 1st IAEA DEMO Programme Workshop, UCLA, Los Angeles CA Oct. 2012
- 9. T. Eich et al Nucl. Fusion **53** 09031 (2013)
- 10. B. Sorbom, et al. " ARC: A compact, high-field disassemblable fusion nuclear science facility and demonstration power plant," being submitted to Fusion Engineering & Design (2014).
- 11. Z. S. Hartwig, et al., "An initial study of demountable high-temperature superconducting toroidal field magnets for the Vulcan tokamak conceptual design," Fusion Eng Design 87 (3), 201-214, 2012.
- 12. D. Meade, "Fusion, FIRE and and the Future," NRL seminar, December 2002 http://fire.pppl.gov/nrl_fire_120202.pdf
- 13. Electricity rate range: 50-100 \$/MW-hr x 8760 hr / Full-power Year x 600 MW = 262-525 M\$/FPY
- 14. D. Whyte, "Smaller & Sooner: Exploiting new superconductors for compact robustly steady-state tokamak reactor designs." JET/CCFE seminar, April 2014 <u>http://fesac_2014.psfc.mit.edu/index.php/Main_Page#High-Field_Approach</u>

National ADX and HTS magnet and ADX initiatives are aligned and timely to the OFES Burning Plasma Science mission

PSEC

Foundations	Year 1-3	Year 4-7	Year 8-10	FNSF options
Transport		H ₉₈ OK, no X-point MARFE		Disruptivity vs.
Stability			ELM-free stationary ped.	performance assessment
Wave-particle	Design HFS launch: LHCD & ICRF	Install, assess PMI & coupling	High η _{CD} , j profile control	Valid RF model & launchers
PMI	Design divertors PMI diagnostics	Install divertors, q// vs. B physics	Integrated q// PMI solution @ high pressure	Heat exhaust/ PMI solutions Solid vs liquid
Long Pulse				
Plasma sustainment		CD efficiency f(B) on HFS	Disruption rates away from limits	Current control toolkit
B-field sustainment	Prototype HTS conductor & joints	Wound coils /w joints, HEP	B>20 T jointed coil demo	Cu vs. HTS Pilot?
Materials	Erosion resistance high-Z PFC	Study: modular replacement	High-T, high-Z, low E _{ion} divertor	Modular replacement
FSAC-SP Whyte			~17 M\$/y ~4	M\$/v + demo coil

Heat exhaust critical to the viability of all FNSF/Pilot designs New edge physics favors small size + high gain → high field

ARC: 9 Tesla "JET", 250 MW net electricity Steady-state tokamak far from disruptive limits

Nuclear				
Fusion Power	525 MW			
Blanket & Depth	Liquid FLiBe > 0.8 m			
$\eta_{ ext{thermal}}$ / $\mathrm{T}_{\mathrm{blanket}}$	~0.5 / ~900 K			
Tritium breeding ratio	1.11			
Plasma core				
R / а / к	3.3 m / 1.1 m / 1.8			
B ₀	9.2 T			
q ₉₅ / q _{min}	7.2 / ~3			
$\beta_{\rm N}$ / ${\rm H_{89}}$	2.59 / 2.7			
$G_{89}: \beta_{N} H_{98} / q_{95}^{2}$	~ 0.15			
Greenwald fraction	~0.6			
RF current sustainment				
CD Efficiency	$> 0.4 \ 10^{20} \mathrm{A/W/m^2}$			
Bootstrap fraction	63%			

Margin to limits! Scenario already achieved In present tokamaks

ARC exploits two features of new SC: B_{coil,max}~23 T + Tapes used for joints

Support ring, 2. Top TF leg
Mechanical joint 6. Epoxy
enforcement 7. Electrical joint

Peak stress ~ 0.75 GPa ~30% margin for 316SS LN

ARC exploits two features of new SC: B_{coil,max}~23 T + Tapes used for joints

Support ring, 2. Top TF leg
Mechanical joint 6. Epoxy
enforcement 7. Electrical joint

"Comb-style" TF resistive joints are expected to lead to $\sim 1 \text{ MW}_{electric}$ dissipation

HTS high-field allows FNSF/Pilot fusion & nuclear requirements with a modest integrated physics gain G₈₉ already achieved in AT plasmas

ACCOME has optimized large advantages of HFS-LHCD + poloidal launch location near X-point

Optimized CD efficiency leads to substantial control of AT current profile below no-wall β_N limit

HFS-LHCD+ high B: Excellent penetration at Lawson criterion minimum <T>~12 keV, ~ doubled CD efficiency to standard scenarios

 $p_{th} \sim 0.8 \text{ MPa}$

ÞSŦC

Small scale + demounting has surprising synergistic benefits: Reduced volume → reduce cool/heat time to ~2-3 days of structure → Modular maintenance

> A single, module is only replaced unit (vacuum vessel + PFCs + Built-in test stations integrated off-site)

DSEC

Small scale → Modular VV → Low-risk immersion liquid blanket (FLiBe) for FNSF

Property	FLiBe	Water
Melting Point (K)	732	273
Boiling Point (K)	1703	373
Density (kg/m ³)	1940	1000
Specific Heat (kJ/kg/K)	2.4	4.2
Thermal Conductivity (W/m/K)	1	0.58
Viscosity (mPa-s)	6	1

Tritium Breeding Ratio: 1.14

Eliminate blanket solid waste

No "blanket" DPA limit

FLiBe provides outstanding heat removal capabilities at high T \rightarrow thermal efficiency

Lessons from ARC..

- Is NOT that ARC is the ultimate, best fusion reactor design..
- Or that every detail of ARC is settled and easily done...
- ARC and it innovations was the result of ~dozen MIT students working for a semester+, showing that it was feasible to produce high gain, SS reactor at JET size
- The real lesson of ARC is that when you change the most fundamental aspects of your MAGNETIC fusion device, i.e. scale, B strength and coil configuration, you also fundamentally change the design options and solutions open to you...