Suppression of large edge localized modes with a stochastic magnetic boundary in high confinement DIII-D plasmas

Presented by T. E. Evans

General Atomics, San Diego, CA, USA

With contributions from:

R. J. Groebner, G. L. Jackson, R. J. La Haye, A. W. Leonard, T. H. Osborne,

M. J. Schaffer, W. P. West - General Atomics, San Diego, CA, USA

R. A. Moyer, J. A. Boedo, D. L. Rudakov - UCSD, La Jolla, CA, USA

J. G. Watkins - Sandia National Laboratories, USA

M. Becoulet, P. R. Thomas- CEA Cadarache, France

M. E. Fenstermacher, M. Groth, C. J. Lasnier - LLNL, CA, USA

K. H. Finken - FZ-Julich, Germany

J. H. Harris, D. G. Pretty - Australian National University, Australia

E. J. Doyle, T. L. Rhodes, G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA

S. Masuzaki, N. Ohyabu - National Institute for Fusion Science, Gifu-ken, Japan

H. Reimerdes - Columbia University, New York, NY, USA

M. R. Wade - ORNL, Oak Ridge, TN, USA

20th IAEA Fusion Energy Conference 1-6 November 2004, Vilamoura, Portugal

tee-04IAEA-1/16

Structure, stability and ELM dynamics of the Hmode pedestal in DIII-D

Fenstermacher EX2-5Rb

M. E. Fenstermacher

LLNL, CA, USA

With contributions from:

R. J. Groebner, A. W. Leonard, T. H. Osborne, P. B. Snyder, D. M. Thomas, M. A. VanZeeland - General Atomics, San Diego, CA, USA J. A. Boedo - UCSD, La Jolla, CA, USA

T. A. Casper, M. Groth, W. M. Meyer, X. Q. Xu - LLNL, CA, USA

R. J. Colchin - ORNL, Oak Ridge, TN, USA

M. A. H. Kempenaars - FOM-Rijnhuizen, Assoc. Euratom-FOM, TEC, Nieuwegein, Netherlands

A. Loarte, G. Saibene - *EFDA-CSU, Max-Planck-Institut for Plasmaphysik, D-85748 Garching, Germany*

G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA and the **DIII-D Team**

20th IAEA Fusion Energy Conference 1-6 November 2004, Vilamoura, Portugal

DIII-D has made substantial progress on developing pedestal solutions for ITER

Evans EX2-5Ra

ELM Suppression (EX/2-5Ra)*

• Type-I ELMs are suppressed with resonant magnetic perturbations

- no confinement degradation
- good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - divertor surface temperature spikes reduced by at least a factor of 5

Fenstermacher EX2-5Rb

Pedestal Structure, Stability and Dynamics (EX/2-5Rb)*

- Structures resembling Peeling-Ballooning modes observed in CIII
- Neutral penetration physics dominates in setting n_e pedestal width
- Measured edge currents agree with NCLASS code

*See posters Wednesday morning

ELM control is a high priority ITER issue

- Normalized ELM energy ($\Delta W_{ELM}/W_{ped}$) increases with T_e^{ped}
- In ITER $\Delta W_{ELM} / W_{ped} > 20\%$
 - exceeds carbon ablation limit by a factor of 2-4

tee-04IAEA-4/16

The DIII-D I-coil provides a flexible system for n=3 ELM control experiments

ELMs are suppressed without degrading confinement

Dynamical state of pedestal changes globally

Evans EX2-5Ra

- Suppression seen on:
 - all D_α arrays (outer midplane, upper and lower divertor, inner wall)
 - particle flux and heat flux to the primary (lower) divertor
- ELM transport is replaced by an increase in the edge magnetic field and density fluctuations
 - modulated by a 130 Hz coherent oscillation

tee-04IAEA-7/16

Stored energy drops are smaller and slower with the I-coil reducing the impulses by > 3X

tee-04IAEA-8/16

I-coil reduces ELM density impulses to the wall

bursty, intermittent and less impulsive

NATIONAL FUSION FACILIT

SAN DIEGO

tee-04IAEA-9/16

Peaks in the divertor surface temperature due to ELMs are reduced by at least a factor of 5 with the I-coil

tee-04IAEA-10/16

Good ELM suppression is obtained in LSN, high triangularity and ITER scenario 2 shapes

SAN DIEGO

tee-04IAEA-11/16

Physics that controls pedestal structure, stability and ELM dynamics is critical to understanding ELM suppression

Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

M. E. Fenstermacher

LLNL, CA, USA

With contributions from:

R. J. Groebner, A. W. Leonard, T. H. Osborne, P. B. Snyder, D. M. Thomas, M. A. VanZeeland - General Atomics, San Diego, CA, USA

J. A. Boedo - UCSD, La Jolla, CA, USA

T. A. Casper, M. Groth, W. M. Meyer, X. Q. Xu - LLNL, CA, USA

R. J. Colchin - ORNL, Oak Ridge, TN, USA

M. A. H. Kempenaars - FOM-Rijnhuizen, Assoc. Euratom-FOM, TEC, Nieuwegein, Netherlands

A. Loarte, G. Saibene - *EFDA-CSU, Max-Planck-Institut for Plasmaphysik, D-85748 Garching, Germany*

G. Wang, L. Zeng - UCLA, Los Angeles, CA, USA and the

DIII-D Team

20th IAEA Fusion Energy Conference 1-6 November 2004, Vilamoura, Portugal

EX/2-5Rb

Measured edge current in H-mode large compared with Lmode; agrees with NCLASS calculation

Fenstermacher EX2-5Rb

Thomas, Leonard, et al. PRL 2004

- urrent Density (MA/m²) H-mode 2 NCLASS U L-mode 2.15 2.20 2.25 R(m)
 - Large J_{H-mode} = 1.5 MA/m² measured in H-mode compared with negligible J_{L-mode} in L-mode
 - Magnitude of J_{H-mode} agrees with calculation of J_{NCLASS} = J_{BS +} J_{PS} from NCLASS code
 - Effect of edge current on stability important to understand ELM onset and ELM suppression

DIII-D/JET pedestal similarity experiments show importance of neutral penetration

Fenstermacher EX2-5Rb

- Matched shapes and (β, ν*, ρ*, q) at top of pedestal
- Neutral penetration physics dominates in setting the density width
 - Mahdavi-Wagner model reproduces differences in DIII-D vs JET profiles
- Plasma physics dominates in setting the transport barrier
 - T_e width ∝ a

Structure of linear P-B ELM instability seen in CIII image data during ELM

SAN DIEGO

Summary and conclusions

Evans EX2-5Ra

ELM Suppression (EX/2-5Ra)*

- Type-I ELMs are suppressed with resonant magnetic perturbations
 - no confinement degradation
 - good suppression for $\Delta t \sim 9\tau_E$ (some isolated ELMs remain)
- A new type of dynamical state replaces Type-I ELMs
 - transport dominated by small, high frequency fluctuations
 - divertor surface temperature spikes reduced by at least a factor of 5

Fenstermacher EX2-5Rb

Pedestal Structure, Stability and Dynamics (EX/2-5Rb)*

- Structures resembling Peeling-Ballooning modes observed in CIII
- Neutral penetration physics dominates in setting n_e pedestal width
- Measured edge currents agree with NCLASS code

*See posters Wednesday morning

tee-04IAEA-16/16