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 OUTLINE 

• SOL Turbulence and Transport 

• Self Generated Flows and 

Momentum Transport in the Core 

and Edge 

• H-mode Threshold 

• Control of ITBs 

• ICRF – Mode Conversion 

• Locked Modes Disruptions 

• LHCD and Other Near-Term Plans 

• C-Mod is compact, high field, 

high density, high power 

density 

• BT to 8 T, IP to 2 MA 

• PICRH to 6 MW 

 

• Equilibrated ions, electrons 

• No core momentum source 

• No core particle source 
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EDGE TURBULENCE DOMINATED BY LARGE STRUCTURES 

• Edge turbulence visualized with high-speed camera (250,000 fps). 

• Large, field aligned structures, “blobs”, account for most  
turbulence and transport.  

• Analysis shows these structures move poloidally inside separatrix 
and accelerate radially outside. 
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POLOIDAL ASYMMETRIES IN SOL PROFILES AND FLUCTUATIONS 
SUGGEST THAT HIGH-FIELD SIDE IS POPULATED VIA FLOWS FROM 

LOW-FIELD SIDE 

• SN plasmas have the 
same pressure on 
both sides. 

• Fluctuations are 
always much lower on 
the high-field side 
(ballooning). 

• DN plasmas have 
very low pressure on 
the high-field side. 

• The self-generated 
“symmetrizing” flows 
are observed  (M ~ 1)



STRONG TOROIDAL ROTATION IN ABSENCE OF EXTERNAL TORQUE   

IS THERE A CONNECTION TO BOUNDARY PHYSICS?  

  

TO REVIEW 
 
 
 
 
 
 
 

• Strong self-generated toroidal 
flows 

• Rotation increases in co-current 
direction as plasma pressure 
increases 

• Decreases with IP 

• Mach numbers up to 0.2-0.3  

• Similar trends seen for RF and 
OH heated plasmas – not an RF 
or fast particle effect 

Rotation Increases with Pressure
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MOMENTUM IS TRANSPORTED INWARD FROM OUTER REGIONS 

• Evolution of rotation profiles 
following transitions can be 
modeled to yield transport 
coefficients 

o EDA – diffusive 

o ELMfree – large 
inward convection as 
well 

• Important role for boundary 

• In all cases, transport is 
much faster than neo-
classical 



SELF-GENERATED CORE AND EDGE FLOWS  EXTREMELY  
SENSITIVE TO MAGNETIC TOPOLOGY   
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• Scan separation between 
primary and secondary 
separatrix (SSEP) 

 SSEP < 0  Lower null 

 SSEP > 0 Upper null 

• Over a few mm, rotation shifts in 
counter direction by 20-30 km/s 

• Scale comparable to SOL size. 

• Links core and edge rotation 

• Double null balance is critical 
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OBSERVATIONS OF SELF-GENERATED FLOWS AND INWARD 
MOMENTUM TRANSPORT LEAD TO A NOVEL HYPOTHESIS FOR  ∇B 

DRIFT INFLUENCE ON L-H THRESHOLD 

• Power/temperature threshold is 2x 
higher for unfavorable topology - ∇B 
ion drift away from SN. 

• Edge rotation is sum of the two 
terms just described. 

o Topology dependent (from 
symmetrizing of ballooning 
transport) – more counter for 
unfavorable geometry. 

o Pressure (power) dependent – 
increases in co-current direction

• For unfavorable topology, discharge 
begins “farther” from threshold state.
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CORRELATION BETWEEN TOPOLOGY, ROTATION AND THRESHOLD 
IS STRONG 

• A few mm change in SSEP 
result in 0th order changes 
in rotation and threshold. 

• Comparable in distance to 
SOL width!! 

• SOL apparently provides 
crucial boundary condition 
for core rotation. 

• Large variation for shots 
labeled “DN” by EFIT. 

Rice- EX/6-4 
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∇B EFFECT IS ONLY PART OF THE L-H THRESHOLD STORY 

• Simulations: suppression of 
drift-Alfven turbulence via 
zonal flows.  (Rogers  1998)

• Guzdar  (PRL 2002) derives 
analytic formula. 
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• Splits difference between 
favorable and unfavorable 
topologies. L-H THRESHOLD COMPARED TO 

ANALYTIC THEORY 
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ITB STUDIES HAVE FOCUSED ON BARRIER CONTROL 

• Barriers formed in C-Mod with off-
axis ICRF heating. 

•  Steep density profiles, with χEFF 
reduced to ion neoclassical levels 
across entire core. 

• Application of on-axis power 
arrests density peaking and 
allows control of particle transport 
(impurity accumulation). 

• Barrier foot position is not linked 
to RF resonance location (or 
whether resonance is on low or 
high-field side). 
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varied from r/a ~ 0.3-0.6

• Strongest scaling is with 
BT. 

• Weaker scaling seen 
with IP. 

• Barrier foot location at 
qψ ~ 1.1 – 1.35 

• Magnetic shear may be 
the critical parameter? 

BARRIER FOOT LOCATION DEPENDS MAINLY ON BT  



PICTURE OF CONTROL MECHANISMS EMERGING FROM GYROKINETIC 
SIMULATIONS 

• TEMs are destabilized by ∇n. 

• Discharge reaches steady state when TEM 
diffusivity balances Ware pinch. 

• Barrier strength controlled by on-axis heating 
via T3/2 dependence of turbulent diffusivity 

Ernst TH/4-1 

• Off-axis heating flattens Te, 
begins to stabilize ITG. 

• With reduced diffusivity, Ware 
pinch causes density to peak. 



FLUCTUATIONS SEEN WITH PCI MAY SUPPORT ITB SCENARIO 

• PCI has very high S/N,  

dynamic range, wide 

bandwidth (to 5 MHz)  

• Fluctuations at kρs ~ 0.3 – 1.0 

increase as barrier develops 

• TEM? 

• Future work will help localize 

fluctuations and extend k 

range. 

ITB formation

Developed ITB
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MODE CONVERSION ICRF – FOR LOCALIZED HEATING, CURRENT 
DRIVE, FLOW DRIVE 

• Power Deposition 
Measurements Validate 
Simulations of Mode 
Conversion Process 

• Off-axis deposition with 
23% H, 77% D (measured) 
at 80 MHz 

• Ion-ion hybrid layer at       
r/a = 0.35 

• Total efficiency 

o Experiment 20% 

o TORIC 18% 
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 ICRF MODE CONVERSION PROCESS STUDIED IN DETAIL WITH 
FLUCTUATION DIAGNOSTIC AND ADVANCED SIMULATION 

• D/He3 at 50 MHz 

• All three waves - FW, IBW, ICW – 
seen in experiment with phase 
contrast imaging diagnostic (PCI).

• Parallel version of TORIC with     
nr = 240, nm = 255. 

• Resolves details of MC process. 

Wright TH/P4-35 

Porkolab P4-32 
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LOCKED MODE THRESHOLD HAS WEAK SIZE SCALING 

• Set of external non-axisymmetric 
control coils installed. 

• Allow determination of intrinsic 
error field and mode locking 
threshold. 

• Dimensionless identity experiments 
performed w/JET, DIII-D. 

• Weak size scaling found. 

• Locked modes should not be worse 
for ITER than for current machines 

• Coils allowed suppression of 
locked modes, 2 MA operation. 

Hutchinson EX/P5-6 

• C-Mod, DIII-D, JET data in same 
range for n/nLIMIT. 

• 5x range in machine size. 



SIGNIFICANT DROP IN HALO CURRENT MAGNITUDE AND ASYMMETRY 
WITH MODIFIED DIVERTOR GEOMETRY 

• Previous work found that halo 
currents scaled with IP/q95 with 
strong poloidal asymmetry. 

• After divertor modification, 
same scaling observed but 
with lower magnitude (1/2) and 
less asymmetry. 

• Drop in halo current may be 
explained by change in 
plasma/divertor contact during 
VDE. 

• Nota bene for future machines



FUTURE WORK: EMPHASIZES AT RESEARCH AND SUPPORT FOR 
BURNING PLASMAS (ITER) IN REACTOR RELEVANT REGIMES  

 Reactor relevant conditions 

o Ions and electrons coupled;  Ti ~ Te 

o tPULSE > τL/R 

o No core momentum or particle sources. 

  Enabled by LHCD 

o 3 MW source at 4.6 GHz. 

o 4 x 24 waveguide array – realtime phase control 

 Cryopump for density control 

 Prototype tungsten brush divertor tiles to help 
manage heat load.   

 Long pulse DNB. 

  



  
 

 
 
 
 
 

The End 




