Equilibrium and Stability of High-β Plasmas in Wendelstein 7-AS

M.C. Zarnstorff¹,

A. Weller², J. Geiger², E. Fredrickson¹, S. Hudson¹, J.P. Knauer², A. Reiman¹,
A. Dinklage², G.-Y. Fu¹, L.P. Ku¹, D. Monticello¹, A. Werner²,
the W7-AS Team and NBI-Group.

¹Princeton Plasma Physics Laboratory ²Max-Planck Institut für Plasmaphysik, Germany

IAEA Fusion Energy Conference 2004 Vilamoura, Portugal 3 November 2004

Outline

- β limits and sustainment in Wendelstein-7AS
- Limiting mechanisms
- Equilibrium & Stability properties
- Conclusions

W7-AS – a flexible experiment

5 field periods, R = 2 m, minor radius a \leq 0.16 m, B \leq 2.5 T, vacuum rotational transform 0.25 \leq $\iota_{ext} \leq$ 0.6

Completed operation in 2002

$\langle\beta\rangle \approx 3.4 \%$: Quiescent, Quasi-stationary

- B = 0.9 T, iota_{vac}≈ 0.5
- Almost quiescent high- β phase, MHD-activity in early medium-β phase
- \bullet In general, β not limited by any detected MHD-activity.
- I_P = 0, but there can be local currents
- Similar to High Density H-mode (HDH)
- Similar β >3.4% plasmas achieved with B = 0.9 – 1.1 T with either NBI-alone, or combined NBI + OXB ECH heating.
- Much higher than predicted β limit ~ 2%

MCZ 041103 4

$\langle\beta\rangle$ > 3.2% maintained for > 100 $\tau_{\rm E}$

Reconstructed Self-Consistent Equilibrium

- STELLOPT/VMEC design-optimization code adapted to be a free-boundary equilibrium reconstruction code: fit p & j profiles to match measurements
- Available data:
 - 45 point single-time Thompson scattering system
 - 19 magnetic measurements
- Reconstructed equilibrium of β =3.4% plasma : lower central iota, flatter profile

$\left<\beta\right>$ Sensitive to Equilibrium Characteristics

- Achieved maximum β is sensitive to iota, control coil current, vertical field, toroidal mirror depth.
- At low iota, maximum β is close to classical equilibrium limit $~\Delta$ ~ a/2
- Control coil excitation does not affect iota or ripple transport
- Is β limited by an equilibrium limit?

Control Coil Variation Changes Flux Surface Topology

- PIES equilibrium analysis using fixed pressure profile from equilibrium fit (not yet including current profile).
- Calculation: at ~ fixed β, I_{CC}/I_M=0.15 gives better flux surfaces
- At experimental maximum β values -- 1.8% for $I_{CC}/I_M = 0$ -- 2.7% for $I_{CC}/I_M = 0.15$ calculate similar flux surface degradation

Degradation of Equilibrium May set β Limit

- PIES equilibrium calculations indicate that fraction of good surfaces drops with β
- Drop occurs at higher β for higher I $_{CC}$ / I $_{M}$
- Experimental β value correlates with loss of ~35% of minor radius to stochastic fields or islands
- Loss of flux surfaces to islands and stochastic regions should degrade confinement. May be mechanism causing variation of β.

Pressure Driven Modes Observed, at Intermediate β

- Dominant mode m/n = 2/1.
- Modes disappear for $\beta > 2.5\%$ (due to inward shift of iota = $\frac{1}{2}$?)
- Reasonable agreement with CAS3D and Terpsichore linear stability calcs. Predicted threshold $\beta < 1\%$

• Does not inhibit access to higher β ! Linear stability threshold is not indicative of β limit.

Low-mode Number MHD Is Very Sensitive to Edge Iota

High-n Instabilities Observed in Special Situations

- Typical high-β plasmas are calculated to be ballooning stable.
 No high-n instabilities are observed.
- High-n instabilities are observed if T_e drops below ~ 200eV. Probably a resistive instability.
- W7AS can vary the toroidal ripple or mirror ratio using 'corner coils' (I_5)
- For $I_5 > I_M$, very unstable low- β phase, then spontaneous transition and rise to moderate β .
- In later $\beta > 2\%$ phase, plasma calculated to be in ballooning 2nd stability regime. How does it get there?

Access to 2nd Stability: Via Stable Path

- Local stability diagrams for infinite-n ballooning evaluated using technique of Hudson and Hegna. Plots shown for r/a = 0.7
- For $\langle\beta\rangle$ > 2%, plasma is calculated to be in second regime for r/a < 0.8
- Thomson pressure profile measurement is only available for $\langle\beta\rangle$ = 1.6%. Measured pressure profile shape was scaled up/down to evaluate other $\langle\beta\rangle$ values.
- \therefore 2nd stability to ballooning can be accessed on stable path, due to increase of shear with β and deformation of stability boundary.

Conclusions

- Quasi-stationary, quiescent plasmas with $\langle\beta\rangle$ up to 3.5% produced in W7-AS for B = 0.9 1.1T, maintained for >100 τ_F
- Maximum β -value appears to be controlled by changes in confinement, not MHD activity
 - No disruptions observed
 - No stability limit observed. Maximum β not limited by MHD activity.
 - Maximum β much higher than linear stability threshold.
 - Maximum β correlated with calculated loss of ~35% of minor radius to stochastic magnetic field. May limit β .
- Pressure driven MHD activity is observed in some cases
 - Usually saturates at ~harmless level. Why?
 - Strong when edge iota ≈ 0.5 or 0.6
 - Exists in narrow range of iota \Rightarrow easily avoided by adjusting coil currents.
- In increased mirror-ratio plasmas, calculations indicate second-stability for ballooning modes can be accessed via a stable path due to the evolution of the shear and stability boundary.

Magnetic Diagnostics are Sensitive to Current

Normalized minor radius

Relative Current Magnitude

- Small, but significant current inferred from equilibrium fit. Estimated uncertainty of magnitude approx. \pm 20% from Rogowski segments
- Three moments used to fit current profile, higher order moments used to force j(a)=0
- Fitted current is larger (in outer region) than model calculations of net current from beam + bootstrap + compensating Ohmic currents.