Progress in the Construction of NCSX

G. H. Neilson for the NCSX Team

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory Suppliers and Collaborators

21st IAEA Fusion Energy Conference Chengdu, China October 20, 2006

NCSX construction is 65% complete

- NCSX component challenges were met.
 - Complex 3D geometries realized.
 - Field errors are minimized.
- Manufacturing solutions were developed— components are now in production.
- Vacuum vessel and 5 modular coils (of 18) are completed.
- On schedule for First Plasma in July, 2009.

NCSX Optimized Configuration to Test High β, Quasi-axisymmetric Stellarator

Plasma Properties at $\beta = 4\%$

- Quasi-axisymmetric. Low ripple.
 - Tokamak-like particle and flow behavior.
- Stable, good magnetic surfaces.
- Low R/(a) (4.4)
- Reverse shear q-profile.
- 25% of transform from bootstrap.
- Constrained by engineering feasibility metrics.

Mission: Test MFE Potential

- Steady state without current drive.
- High- β , disruption-free operation.
- Compact, tokamak-like performance.

- 3-period plasma.
- 18 modular coils (3 shapes).
- TF, PF, & helical trim coils (not shown).
- R = 1.4 m.
- B = 1.2 2.0 T, pulse 0.5 2.0 s

Field Error Minimization is Critical

Design and Manufacturing Strategy

- Dimensional accuracy (±1.5 mm on completed magnet system).
 - ±0.5 mm allocated to coils.
- Low magnetic permeability.
- Low eddy currents.
- Enforce stellarator symmetry.

Requirements are being met within project cost and schedule constraints.

Coil Design Reduces Field Error Risks

Modular Coil

System

- Robust structural shell minimizes deflections.
- Toroidal and poloidal breaks inhibit eddy currents.
- Winding form stays with the coil as a permanent structure.
- Lead / crossover arrangement minimizes field errors.

Modular coil winding form (MCWF) one per coil.

Winding Forms Are Manufactured to ±0.25 mm Tolerance on Critical Surfaces

- Custom casting alloy (close to 316LN st. steel)
 - Low permeability ($\mu < 1.02\mu_0$)
 - Air quenchable (minimizes distortion risk).
- Optimized casting mold.
 - Hard wood pattern for part reproducibility.
 - Flow-solidification simulations used to design molten metal feed system.
- Machined on a series of multiaxis milling machines.

All 18 Have Been Cast 8 Have Completed Machining and Shipped to PPPL

Winding Process Controls Current Center Position

- Conductor is flexible copper "rope".
 - Follows "Tee" winding surface.
 - Small (9x10 mm) conductor, wound
 - 4-in-hand, maintains shape in bends.

- Winding pack dimensions are adjusted with clamps.
 - Compensates for winding form errors.
 - Bundle secured with fabric strips after adjustment.
 - Complete assembly is epoxyimpregnated by VPI.

Coil Construction Achieves ±0.5 mm Accuracy

5 Coils Have Been Completed

• First coil was successfully cooled down and tested at full current.

Large-Panel Vacuum Vessel Construction Achieved ±5 mm Accuracy

Panels Pressed at Room Temp. Assembled & welded on skeletal fixtures

All 3 Field Period Sectors Completed!

Ex-Vessel Flux Loops for Reconstruction

Requirements

- Measure stellarator-symmetric (SS) equilibrium fields for reconstruction (n = 3, 6,...).
 - Also non-SS field errors and instabilities.

Method

- Free-boundary VMEC equilibrium data base.
 - 2,500 cases
- VV locations ranked for reconstruction effectiveness using SVD algorithms.

- 227 loops / 151 distinct locations/shapes.
- Custom installation templates made for each shape (±0.13 mm).

Flux Loop Mounting Points Mapped to VV Surface

Mounting locations are transferred from CAD model to vessel using laser scanner.

Next Step: Build Field-Period Subassemblies

Modular Coil triplets will be installed over vacuum vessel.

• Coils are moved along assembly trajectory suspended from crane.

Low-cost trajectoryfollowing technique was successfully demonstrated.

Thanks to our Suppliers and Collaborators

- Major Tool & Machine, Inc. -vacuum vessel, modular coils
- Energy Industries of Ohio, Inc. -modular coils
- C. A. Lawton Co. *-modular coils*
- MetalTek International, Carondelet Div. -modular coils
- New England Wire Technologies, Inc. -modular coils
- Everson Tesla, Inc. -TF coils
- Tesla, Ltd. (UK) -TF coils
- Österby Gjutery (Sweden) -TF coils
- A. Boozer, Columbia Univ. -magnetic diagnostic design.

NCSX is on Schedule for July, 2009 First Plasma

