

# Study of Advanced Tokamak **Performance using the International Tokamak Physics Database**

**A.C.C. Sips**<sup>1</sup>, E.J Doyle<sup>2</sup>, C. Gormezano<sup>3</sup>, Y. Baranov<sup>4</sup>, E. Barbato<sup>3</sup>, R. Budny<sup>5</sup>, P. Gohil<sup>6</sup>, F. Imbeaux<sup>7</sup>, E. Joffrin<sup>7</sup>, T. Fujita<sup>8</sup>, N. Kirneva<sup>9</sup>, X. Litaudon<sup>7</sup>, T. Luce<sup>6</sup>, M. Murakami<sup>10</sup>, J. Rice<sup>11</sup>, O. Sauter<sup>12</sup>, M. Wade<sup>10</sup> for the international ITB database working group, the Transport Physics group<sup>13</sup> of the ITPA and the Steady State Operation group of the ITPA.

<sup>1</sup> Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748, Garching, Germany.

<sup>2</sup> University of California, Los Angeles, USA.

<sup>3</sup> ENEA Frascati Energy Research Centre, Frascati, Italy.

# **Progress towards long pulse or non-inductive operation**

 $H_{89}\beta_N/q_{95}^2$  is used as a "figure of merit" for performance:  $H_{89}\beta_N/q_{95}^2 \sim 0.4$  for the ITER reference scenario, at 15 MA.  $H_{89}\beta_N/q_{95}^2 \sim 0.3$  for the ITER non-inductive scenario at 9 MA.

The results are plotted separating hybrid and reversed shear scenarios.

- <sup>4</sup> UKAEA-EURATOM Association, Culham Science Centre, Abingdon, OX14 3DB, UK.
- <sup>5</sup> Plasma Physics Laboratory, Princeton University, Princeton, USA.
- <sup>6</sup> General Atomics, San Diego, USA.
- <sup>7</sup> Association EURATOM-CEA Cadarache, St Paul lez Durance, France.
- <sup>8</sup> JAERI, Naka Fusion Research Establishment, Naka, Japan.
- <sup>9</sup> Kurchatov Institute of Atomic Energy, Moscow, Russia.
- <sup>10</sup> Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831 USA
- <sup>11</sup> Massachuchetts Institute of Technology, Cambridge, USA.
- <sup>12</sup> Association EURATOM-Confédération Suisse, CRPP, CH-1015 Lausanne, Switzerland.
- <sup>13</sup> For full list: X. Litaudon et al 2004, Plasma Physics and Controlled Fusion 46 (2004), A19

### E-mail contact of the main author: ccs@ipp.mpg.de

# Introduction

#### Advanced scenarios in tokamaks:

Improve confinement and stability over standard ELMy H-modes.

### Key is the current density profile:

For the inductive operation mode of ITER, q(r) is monotonically decreasing with  $q_0 < 1$ 



- Transient discharges (*duration* <  $10\tau_E$ , <u>open symbols</u>) can obtain high performance, but this cannot be maintained at these levels in more stationary conditions (*duration*)  $\geq 10\tau_F$ , <u>closed symbols</u>).
- For hybrid discharges there is no clear difference between the various 2. experiments in the dataset (Tore Supra data, have lower performance). Performance in line with  $Q \ge 10$  for ITER (long pulse).
- The **reversed shear** results show two distinct groups: 3.

and  $q_{95} \sim 3$ . Advanced scenarios (see Figure): **Reversed shear scenarios and Hybrid** scenarios (~ zero shear).

"A continuum of regimes between the reference non-inductive and inductive scenarios in which the current profile is modified externally but not completely driven non-inductively".





# **The ITPA database** (a scalar database [1])

- Data from DIII-D (weak reversed shear, with  $1.5 < q_{min} < 2$ ), close to the  $Q \sim 5$ (a) for ITER non-inductive scenario.
- Data from JET and JT-60U at lower performance (typically at  $q_{95} = 6-9$ ). (b)
- **Sufficient bootstrap current ?:** 4.

Figure plotting  $H_{89}\beta_N/q_{95}^2$  versus  $\varepsilon^{0.5}\beta_p$  (~ bootstrap current for similar q-profiles).



Document the operational domain of the advanced scenarios  $\rightarrow$  ITER.

Previous analyses on ITB formation [2] and performance [3]. Following improvements:

- The data are <u>averaged</u> over the duration of the high performance phase. The duration: W > 85% of the maximum stored energy during the pulse.
- <u>Better conditioned dataset</u>, removing shots from ASDEX Upgrade and JET that were 2. not advanced. More data from DIII-D are now available, including data from Quiescent Double Barrier (QDB) discharges (for this regime, the values used for  $\tau_{\rm F}$ and  $H_{89}$  in the dataset are not corrected for prompt losses).
- Now the advanced scenarios are divided into two groups to allow comparison 3. between (i) reversed shear scenarios and (ii) hybrid scenarios.

#### Hybrid scenarios:

High performance at low  $q_{95}$ =3-3.5 (> ITER reference values), or at  $q_{95}=4-4.5$  with  $\varepsilon^{0.5}\beta_p=1$ . For this type of q-profile  $\rightarrow 40\%$  bootstrap fraction, suitable for long pulse operation.

## **Reversed shear discharges:**

No stationary conditions for  $q_{95} < 5$  (except QDB discharges). At  $q_{95} \ge 5$ ,  $\varepsilon^{0.5} \beta_p = 1$  is obtained  $\rightarrow \sim 65\%$  bootstrap current fraction (high  $q_0$ ). Discharges at  $q_{95} \sim 5$  (DIII-D) fulfil ITER requirements. However, at  $q_{95} \ge 6$  performance is too low.

## **SUMMARY**

An international scalar database (ITPA): Two advanced scenarios for ITER have been studied.

- 1. Hybrid scenarios with weak magnetic shear and  $q_0$ =1-1.5,  $\beta_N \sim 3$  operating at ~50% non-inductive current fraction at  $q_{95} \sim 4$ ,  $T_{i0} \sim C T_{i,ped}$ . At  $q_{95} \sim 3$ , exceeds ITER performance targets for  $Q \sim 10$ .
- 2. Scenarios with reversed magnetic shear and  $q_0 > q_{min}$ . Two groups of stationary discharges:  $q_{95} \sim 5$  with  $\beta_N \sim 3$  (DIII-D),  $q_{95} = 6-9$  with  $\beta_N < 2$  (JET and JT-60U). Includes comparison with QDB discharges.

**Common to both regimes:** Stationary only when  $T_{i0} \sim C T_{i,ped}$ .

The normalised confinement ( $H_{89}$ ) increases with  $T_{i0}/T_{e0}$ , or with ( $< n_e > /n_{GW}$ )<sup>-1</sup>. At ITER relevant  $v^*$ , high confinement and peaked density profiles.

Scope for further study and collaboration between experiments worldwide (ITPA).

### Key: Plasma stability (performance limits)

Advanced scenarios: Maximise beta  $\rightarrow$  near one or more stability limits (see figure).

#### Confinement enhancement ?

Increase of  $H_{89}$  with  $T_{i0}/T_{e0}$ , for all experiments (same for all advanced scenarios ?).



The maximum  $\beta_N$  drops sharply for high pressure peaking ( $p_0/\langle p \rangle$ ).



#### **Reversed magnetic shear:**

Internal transport barriers (ITBs) have inherently a lower beta limit. Broad pressure profiles are favourable for obtaining high beta (weaker ITBs). Only reversed shear discharges with weak transport barriers (DIII-D at  $q_{95}$ ~5) just exceed  $\beta_N / 4l_i$ , = 1.

#### Hybrid scenarios:

 $T_{i0}/T_{e0} \rightarrow 1$ : Neutral beam heating at high density.

So  $T_{i0}/T_{e0}$  is strongly correlated with  $\langle n_e \rangle / n_{GW}$ . ASDEX Upgrade [4] uses ICRH at low density,  $\rightarrow H_{89} > 2$  for  $T_{i0} \approx T_{e0}$  (corroborated by recent results from DIIII-D [5]).



# **Extrapolation to ITER**

Requirements for advanced operation in ITER can be met.

Operate with  $q_{95} = 3$  to 4.5. With pressure peaking  $p_0/\langle p \rangle$  between 2 and 4. Obtain beta values ( $\beta_N \sim 3$ ) close to the no wall limit ( $\beta_N / 4l_i$ , ~ 1).

## Implications (see figure below):

Operating at high beta: Without, or with weak, internal transport barriers. So: Central ion temperature is related to the edge ion temperature ( $T_{i0} \sim C T_{i,ped}$ ).



**Confinement of advanced scenarios** 

## Most experiments are at low density $\rightarrow$ close to ITER $\nu^*$ values:

- Highest values for  $H_{89}$  at low  $v^*$ .
- Peaked density profiles for ITER  $v^*$  values.

However: Density peaking and  $H_{89}$  are not strongly correlated (~ 0.3).

**NEED:** Comparison with standard H-modes in similar conditions (future work in the ITPA groups).

High beta at low normalised ion larmor radius ( $\rho_i^*$ )? (ITER  $\rho_i^*=1-2x10^{-3}$ ).

ASDEX Upgrade and DIII-D:  $\beta_N \sim 3$  (mostly Hybrid scenarios). Drop in  $\beta_N$  going to low  $\rho_i^*$ ?: Some experiments do not have sufficient input power to achieve  $\beta_N \sim 3$  at low  $\rho_i^*$  (JT-60U and JET). Tore Supra:  $T_{e0} > T_{i0}$  (hence low  $\rho_i^*$ )



Standard H-modes, typically have stiff temperature profiles, advanced scenarios ?

→ Plot ion temperature in the core ( $T_{i0}$ ) versus the ion temperature at 90% of the minor radius ( $T_{i,ped}$ ) for hybrid discharges, and reversed shear discharges (figure above).

#### Hybrid scenarios:

Show a strong correlation between the core and edge ion temperatures, for data from several experiments.

#### **Reversed shear discharges:**

- Show a scatter plot, specifically for duration  $< 10\tau_{E}$  (ITB !).
- However, stationary reversed shear discharges cluster around the same ratio of  $T_{i0}$  to
- $T_{i,ped}$  as in hybrid discharges. (Similar behaviour for QDB discharges to some extent, not shown in this figure).

#### **References**

- [1] T. Fukuda et al 2001, Proc. 28th EPS Conference (Funchal).
- [2] T. Fujita et al 2003, 30th EPS Conference (St. Petersburg).
- [3] X. Litaudon et al 2004, Plasma Physics and Controlled Fusion 46 (2004), A19
- [4] A. Stäbler et al 2004, this conference.
- [5] M. Wade et al 2004, this conference.