### Optimized beta limits in DIII-D advanced tokamak discharges: global and edge

J.R. Ferron General Atomics

presented at the IEA Workshop 59 Feb. 14-15, 2005 San Diego, CA



#### STEADY-STATE ADVANCED TOKAMAK OPERATION AT HIGH BETA IN DIII–D IS BEST ACHIEVED IN A STRONGLY-SHAPED DISCHARGE WITH A BROAD PRESSURE PROFILE

- Focus is on modification of the present successful scenario with 100% noninductively driven current
- Goal of a high fraction of bootstrap current leads to exploration of methods to maximize  $\textbf{q}_{min} \; \beta_N$
- Without modification of the pressure profile, the maximum achieved  $\beta_{\text{N}}$  decreases with increasing  $q_{min}$
- With a broadened pressure profile,  $\textbf{q}_{min} \ \beta_{N}$  is maximized at the highest  $\textbf{q}_{min}$  tested
  - Modeling indicates that  $\beta_N = 5$  should be possible
- Increases in beta limits with elongation and triangularity motivate double-null divertor operation



# BALANCING THE REQUIREMENTS FOR STEADY-STATE OPERATION AND HIGH FUSION GAIN LEADS TO A SCENARIO WITH HIGH $q_{min} \beta_N$

- Steady state: requires a large bootstrap current fraction fBS  $\,\propto\,\,\beta_{p}\,\,\propto\,\,q\beta_{N}$
- Motivates operation with elevated q across the entire profile
- For high fusion gain  $\propto \beta \tau_E \propto \beta_N H_{89}/q_{95}^2$ , increase  $q_{min}$  rather than  $q_{95}$
- Highest possible  $\beta_N$  to maximize fusion gain and  $f_{BS}$
- Off-axis electron cyclotron current drive (ECCD) used to regulate current profile
  - Efficiency increases with  $\beta_e$
- Divertor exhaust pumping to control H–mode density
  - For relevant collisionality and efficient ECCD
  - Presently in DIII–D, this requires an upper single-null divertor shape



### **SCALING WITH qmin**

#### THE q PROFILE IS VARIED BY MODIFYING THE DISCHARGE FORMATION OR DELAYING THE HIGH BETA PHASE



## THE NO-WALL $\beta_N$ LIMIT IS MEASURED BY MONITORING STABILITY AS THE CORRECTING CURRENT FOR NONAXISYMMETRIC FIELDS IS REMOVED

- For β<sub>N</sub> above the no-wall limit, the drag on toroidal rotation is enhanced because of the plasma response to the nonaxisymmetric fields
- Rotation decreases significantly to below the critical level for n = 1 resistive wall mode stabilization





295-04JF/jy

### $\begin{array}{l} \text{MEASURED NO-WALL } \beta_{\text{N}} \text{ LIMIT AND MAXIMUM EXPERIMENTAL} \\ \beta_{\text{N}} \text{ DECREASE AS } \textbf{q}_{min} \text{ INCREASES} \end{array}$





# QUANTITATIVE AGREEMENT BETWEEN THE MEASURED NO-WALL $\beta_N$ LIMIT AND THEORY DEPENDS ON VALUES OF H-MODE PEDESTAL J AND P'



NATIONAL FUSION FACINTY

SAN DIEGO

## $q_{95}$ FOR STEADY-STATE EXPERIMENTS IS CHOSEN TO MAXIMIZE THE EXPERIMENTALLY ACHIEVABLE $\beta_{\text{N}}$

- Modeled n = 1 stability limits show a decrease with increasing B<sub>T</sub> (q<sub>95</sub>)
- Trend with q<sub>95</sub> of measured no-wall limit agrees with the modeling
  - Quantitative difference results from different q<sub>min</sub> values





## $q_{95}$ FOR STEADY-STATE EXPERIMENTS IS CHOSEN TO MAXIMIZE THE EXPERIMENTALLY ACHIEVABLE $\beta_{\text{N}}$

- Modeled n = 1 stability limits show a decrease with increasing B<sub>T</sub> (q<sub>95</sub>)
- Trend with q<sub>95</sub> of measured no-wall limit agrees with the modeling
  - Quantitative difference results from different q<sub>min</sub> values
- Operation closer to the ideal-wall limit at increased  $B_T$  is responsible for the increase in achievable  $\beta_N$





### EFFECT OF BROADENED PRESSURE PROFILE

# A MODELING STUDY INVESTIGATED THE DEPENDENCE OF $\beta_N$ LIMITS ON THE PRESSURE GRADIENT PROFILE SHAPE IN $f_{BS}$ > 70% EQUILIBRIA

• Core P' specified by a family of polynomials:



- Hyperbolic tangent form used for H-mode edge pressure pedestal:
  - Based on experiment scaling
  - $\ \textbf{P}_{ped} \propto \ \textbf{I}_{p}^{2} (1 + \beta_{p})^{0.9} (1 + \delta)^{2.11} (1 + \kappa^{2})^{-1.15}$
- Total pressure = core + pedestal
  - P(0)/ $\langle P \rangle$  ranges from 2 to 4.5



## PREDICTED $\beta_{\mbox{N}}$ LIMITS DECREASE STRONGLY AS THE PRESSURE PROFILE BECOMES MORE PEAKED

- n = 2 is the limit for P(0)/ $\langle P \rangle$  < 3
- Scatter results from the range of discharge shapes included
- Model equilibria have  $q_{min}\approx 2$
- Predicted values agree roughly with the experimental data
- Fit: β<sub>N</sub> = 11.9[P(0)/⟨P⟩]<sup>-1.13</sup>





## WITH EFFICIENT PARTICLE EXHAUST PUMPING P(0)/(P) IS HIGH AND $\beta_N$ LIMIT IS REDUCED

- Pumping reduces n<sup>pedestal</sup>, core neutral beam fueling increases n<sub>e</sub>(0)
- There is weak negative central shear that leads to a weak internal transport barrier, further peaking n<sub>e</sub>, T<sub>i</sub>
- Internal mode grows on a rapid time scale
  - Kink mode phasing similar to pressure gradient driven resistive interchange
  - Initiates reduction in P peaking and change in bootstrap profile
  - In some discharges, a disruption immediately follows the mode





## IN THE EXPERIMENT, A BROADER PRESSURE PROFILE AND HIGHER $\beta_{N}$ WERE OBTAINED BY BROADENING THE DENSITY PROFILE WITH EXTRA GAS PUFFING



VATIONAL FUSION FACING

SAN DIEGO

295-04JF/jy

#### BROADER PRESSURE PROFILE ALLOWS BETA TO CONTINUE RISING TO $\beta_N = 4$ at $q_{min} = 2$

- Rotation decreases as  $\beta_N$  passes above the ideal no-wall limit as a result of the enhanced plasma response to external, nonaxisymmetric fields
- Drop in rotation to near 0 as β<sub>N</sub> approaches the maximum value results from low level n = 1 resistive wall mode activity



VATIONAL EUSION FACINT

SAN DIEGO



### BROAD PRESSURE IS POSSIBLE BECAUSE OF ACCESS TO THE INFINITE-n BALLOONING MODE SECOND STABLE REGIME ACROSS THE FULL PROFILE

- Normally there is a region where  $dP/d\psi$  is limited by ballooning stability
- Magnetic shear profile modified by broadening bootstrap current



# EVEN WITH $\beta_N$ NEAR THE IDEAL-WALL LIMIT, THE HIGH BETA PHASE ALMOST ALWAYS ENDS AS A RESULT OF A TEARING MODE, NOT A KINK MODE

 q<sub>min</sub> > 2, more peaked pressure: n = 1 tearing mode locks to low level n = 1 RWM





# EVEN WITH $\beta_N$ NEAR THE IDEAL-WALL LIMIT, THE HIGH BETA PHASE ALMOST ALWAYS ENDS AS A RESULT OF A TEARING MODE, NOT A KINK MODE

- q<sub>min</sub> > 2, more peaked pressure: n = 1 tearing mode locks to low level n = 1 RWM
  - q<sub>min</sub> > 2, broad pressure:
    3/1 mode grows to large amplitude.
    Earlier n = 5/2 or 7/2 burst briefly reduces beta





# EVEN WITH $\beta_N$ NEAR THE IDEAL-WALL LIMIT, THE HIGH BETA PHASE ALMOST ALWAYS ENDS AS A RESULT OF A TEARING MODE, NOT A KINK MODE

- q<sub>min</sub> > 2, more peaked pressure:
  n = 1 tearing mode locks to low level
  n = 1 RWM
- q<sub>min</sub> > 2, broad pressure:
  3/1 mode grows to large amplitude.
  Earlier n = 5/2 or 7/2 burst briefly reduces beta
- q<sub>min</sub> ≈ 1.7: 2/1 mode grows to large amplitude. Earlier fast growing n = 1 kink-type mode triggers 3/2 tearing
- Even if q<sub>min</sub> is maintained above 2 to avoid the 2/1 tearing mode, other modes with larger m/n can still have significant effects on confinement





### THE CALCULATED STRUCTURE OF THE UNSTABLE n=1 MODE ILLUSTRATES THE REGIONS OF THE DISCHARGE MOST STRONGLY AFFECTING STABILITY



SAN DIEGO

# A RELATIVELY FLAT q PROFILE WITH LARGE $\rho(\textbf{q}_{min})$ IS UNDER STUDY AS A WAY TO BROADEN THE PRESSURE PROFILE

- Preliminary results show broadening of temperature profiles as q<sub>95</sub> decreases and ρ(q<sub>min</sub>) increases
- A safety factor profile with qmin > n (n integer) and q95 < n + 1 could be a way to avoid tearing modes





### **DISCHARGE SHAPE CHANGES**

# IN THE EXPERIMENT, THE ACHIEVABLE $\beta_{N}$ WAS COMPARED IN THE STANDARD PUMPING SHAPE AND DISCHARGES WITH STRONGER SHAPING

• Cryopumps were not used so no change in particle pumping with shape





## THE MAXIMUM $\beta_{\mbox{N}}$ was obtained in the up/down symmetric double-null divertor shapes

• Changes in profiles could also be important:  $\ell_i$ , P(0)/(P), H–mode pedestal



- $\beta_N$  not limited by an ideal kink
  - Standard shape: fast growing core
    n = 1 leads to a disruption
  - Higher  $\kappa$ ,  $\delta$  shapes: large ELMs lead to a soft collapse





## MODELING STUDIES PREDICT THAT INCREASES IN $\kappa, \delta$ increase the ideal, low-n $\beta_{N}$ limits

Examples of results from a broad range of parameter scans with double-null



- Indicates increase in experimental  $\beta_N$  likely results from increase in  $\kappa$ ,  $\delta$  in transition from single-null to double-null shape
- n = 2, n = 3 limits are lower than for n = 1 (here pressure is broad)



### Increasing the H-mode edge pedestal height can help to broaden the pressure profile

- The pressure pedestal height is a function of the discharge shape.
- The pedestal height is limited by ELMs.
  - Type I ELM stability has been successfully compared to stability of medium-n ballooning/peeling modes.
- For fixed pedestal width, increasing the height increases the edge-region pressure gradient and bootstrap current.
  - These changes are destabilizing for low-n and medium-n edge-driven modes.
- Additional modeling is probably necessary in order to understand the net effect on global, low-n stability of changes in the pedestal height and width.



### MEASURED $P'_{edge}$ SCALES WITH DISCHARGE SHAPE LIKE THE PREDICTED THRESHOLD FOR n = 5 IDEAL, KINK/BALLOONING MODES



SAN DIEGO

#### CHANGE IN BALLOONING 2nd REGIME ACCESSIBILITY IS INDICATED BY CHANGES IN ELM FREQUENCY AND AMPLITUDE

• At sufficiently high squareness:

SAN DIEGO



Abrupt: only a small shape

#### Trends in Existing Pedestal Database Can Be Understood Using Stability of Model Equilibria



#### • Trends with density and triangularity calculated using series of model equilibria, and compared to database

- Inputs are  $B_t$ ,  $I_p$ , R, a,  $\kappa$ ,  $\delta$ ,  $\langle n_e \rangle$ ,  $\Delta$
- Strong increase in pedestal height with triangularity is due to opening of second stability access
  - Bootstrap current plays a key role here. Without it (dashed line) second stability is not accessed at high *n* and strong  $\delta$  trend not predicted
- Trends with both density and triangularity accurately reproduced: indicates both that pedestal is MHD limited and that model equilibria are sufficiently accurate
  - encourages use of this method as a predictive tool for future devices Particular Fusion Facility

### Peeling-ballooning modes provide a constraint on the edge temperature pedestal, as well as $\beta$

Edge current density increases with edge temperature (Ohmic+collisional bootstrap)

Can consider stability diagram in  $\beta_N$ - $T_{ped}$  space

MHD stability explicitly limits steady state  $T_{ped}$ , (for a given width)

Higher triangularity decouples peeling and ballooning modes, allows higher temperature pedestal



### MODE WITH THE LARGEST n WITHOUT 2nd STABLE REGIME ACCESS WILL HAVE THE LOWEST $P_{edge}^{\prime}$ STABILTY THRESHOLD

- Calculated P<sub>edge</sub> threshhold decreases with toroidal mode number
- Fixed, medium squareness ( $\delta_2$  = 0.05) shape, wall radius = 1.5 $\alpha$ , GATO code

Calculated Stability Threshhold (Full Geometry)



### OPTIMIZATION OF ADVANCED TOKAMAK DISCHARGES WITH RESPECT TO THE BETA LIMIT IS POSSIBLE THROUGH TUNING OF THE q PROFILE, PRESSURE PROFILE AND DISCHARGE SHAPE

- Goal: find the best way to operate at high  $\beta_N$  and q in order to maximize  $f_{BS}$  for steady-state and  $\beta_T$  for fusion gain
- A test of the effect of a broader pressure profile resulted in increased  $\beta_N$ 
  - From modeling, pressure profile broadening could allow large increases in achievable beta
- $q_{min} \beta_N$  increased from 6 at  $q_{min} = 1.5$  to 9 at  $q_{min} \approx 2.3$ , the highest value tested — Increasing  $f_{BS}$  by increasing  $q_{min}$  is feasible with broad pressure
- Operation is routinely above the no-wall stability limit
  - Optimized correction of nonaxisymmetric fields and active feedback stabilization of the RWM are essential
- Highest experimental  $\beta_N$  values were obtained in balanced double-null discharge shapes with the largest  $\kappa, \delta$



# UPCOMING WORK IN DIII–D IS WELL POSITIONED TO FOLLOW THE PATH TO HIGH $\beta_N$ AT INCREASED $q_{min}$ INDICATED BY THESE RESULTS

- Additional power for electron cyclotron and fast wave current drive will be available to control q<sub>min</sub> and q(0)
- Conversion of 1/4 of the neutral beams to counter-injection will allow additional rotation profile control
  - Together with current profile control, provides a possible mechanism for pressure profile broadening through energy transport modification
- Lower divertor pump to be converted to pump higher triangularity double-null divertor discharges
- Recently installed internal nonaxisymmetric coils will be used for improved error field correction and improved active RWM feedback control to allow steady-state operation close to the ideal-wall beta limit



### **Pedestal & ELMs Key to Plasma Performance**

 Both theory and experiment indicate a strong dependence of core confinement, and therefore Q on the pedestal height (p<sub>ped</sub>, T<sub>ped</sub>)



 ELM characteristics strongly impact divertor and wall heat load constraints (large Type I ELMs may not be tolerable in Burning Plasma devices)

Goal is predictive understanding of physics controlling pedestal height and ELM characteristics characteristics combination of high pedestal and tolerable ELMs







### H-mode pedestal may impact H-mode based tokamak reactor performance through temperature profile stiffness.

• Maximum  $P_F$  and Q are obtained at min <T> for stable operation =>  $P_F/P_{LOSS} \sim H^2$ 



#### Intermediate *n* Peeling-Ballooning Mode Model of the Type I ELM Instability is Consistent With Observations

- P' variation with shape in DIII-D, JT-60U, and AUG consistent with edge peeling-ballooning stability
- ELM onset time consistent with predicted instability onset
- Fast growing low 1 < n < 30 modes are observed as Type I ELM precursors





#### **Motivation and Background**

- ELMs and the edge pedestal are key fusion plasma issues
  - "Pedestal Height" controls core confinement and therefore fusion performance (Q)
  - ELM heat pulses impact plasma facing materials





Observed Impact of Pedestal Height (DIII-D)



#### **Background: Extending the Peeling-Ballooning Model**



- Peeling-Ballooning Model of ELMs significant successes
  - ELMs caused by intermediate wavelength (n~3-30) MHD instabilities
    - Both current and pressure gradient driven
    - Complex dependencies on  $v_*$ , shape etc due to bootstrap current and "2nd stability"
  - Successful comparisons to experiment both directly and in database studies
- Need to understand sources and transport to get profile shapes ("pedestal width")
- Rotation and non-ideal effects to precisely characterize P-B limits, nonlinear dynamics for ELM size





