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OUTLINE

|. Optimum tokamak study by Lin-Liu/Stambaugh

Il. Comparison with similar study by Menard

lll. Transport dependence on shape (A, x)
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l. WHAT IS THE OPTIMUM TOKAMAK?

@ Lin-Liu/Stambaugh constructed equilibria with
— Bootstrap fraction of 99%, fully aligned
— P" =0 at separatrix
— Broad, nearly optimal, pressure profile
* Edge ITB?

@ lIdeal ballooning {3 limit found using BALOO
— Bulk of plasma has second stability access
— Ballooning limit occurs at a point near edge
— Wall stabilization assumed for kinks

® Systematic shape study spanned
—1.5<x<6.0
—12<A<7.0

D’ ’ ’ -D 023-05/rs

NATIONAL FUSION FACILITY
SSSSSSSS



HIGH BETA, HIGH ELONGATION, HIGH BOOTSTRAP EQUILIBRIUM

® A=16,=40,5=05Br=73%, By=28.0,Pp=1.6
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SYSTEMATIC STUDY OF 3\-LIMIT VERSUS R/a AND « FOR fgg = 0.99

By dependence close to A-1/2

By is optimal at x = 3-4

Symbols are Calculations
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STRONG SHAPING (0) IS NEEDED TO TAKE FULL ADVANTAGE
OF HIGH ELONGATION

® Betaincreases with o for k>3
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KEY RESULTS OF LIN-LIU/STAMBAUGH STUDY

@ Trade-off between fusion power and bootstrap current at a given normalized beta

1412
e[ (]

‘ - fs = Cps Bp/VA

. pFocB?rB4

® Shape dependence of ideal ballooning stable beta

d +d1K
By = 10 (bg + byic + box? + baxcd) coth( ) an
by -0.7748 dy 1.8524
by 1.2869 d; 0.2319
by, -0.2921 m 0.6163
b; 0.0197 n 0.5523
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|l. IDEAL WITH-WALL BALLOONING LIMIT FOR FULLY
SELF-SUSTAINED EQUILIBRIA NEARLY SAME BETWEEN
MENARD’S AND LIN-LIU’S STUDIES

® = Menard
51 — Lin-Liu’s 3 formula

Aspect Ratio
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lll. TRANSPORT DEPENDENCE ON SHAPE (A, x)

® While empirical confinement scaling relations of the form

IPB98(y,2) 1=0.0562 0-93 n041 015 p-0.69 R1.97 ;0.19 0.78 A-0.58
EGB 7=0.028 10-83 0.49 g0.07 p-0.55 R2.11 0.14 ,.0.75 A-0.3

are fully predictive, the trade-offs between different parameters
due to operational constraints are not readily apparent

* e.g., safety factor constraint relates I, k, A, and R

@ Casting confinement scaling relations in terms of dimensionless
parameters allows the shape and aspect ratio dependences to be
easily determined once the operational constraints are specified
— Can choose kinetic plasma physics parameters like p, and v,

— Can choose MHD parameters like q and B
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DEPENDENCE OF TRANSPORT ON g AND «

® Experiments on DIlI-D resolved the ambiguity between the x and q scalings
of transport by comparing

— ¢ scan at fixed «
— Kk scan at fixed q
— Kk scan at fixed |

® For H-mode plasmas, the change in confinement for the above three scans
was explained by the unified scaling
-1.4+0.6 2.2+0.6
BT o< qgs K
® Note that the g and « scalings of normalized confinement are different than
the |, and « scalings of
* Converting dimensionless parameter scalings for H-mode plasmas

on DIII-D to engineering parameter scalings gives

0.76+0.14  0.65+0.16
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MEASURED q AND « SCALINGS OF H-MODE TRANSPORT
ARE WEAKER THAN PREDICTION FROM IPB98(y,2)

q scanned in two ways K scanned at fixed q
4 0
Bt o< q~%q BT oc k70
3 IPB98(y,2) Prediction 1
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® — xSscCan e e
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,\g! !S !\, :g 023-05/rs

SSSSSSSS



OPERATIONAL CONSTRAINTS ARE CRITICAL WHEN
PROJECTING ASPECT RATIO SCALING OF TRANSPORT

@ Aspect ratio affects many important dimensionless parameters
—q, BN’ Vs st, etc.

@ Future experiments between DIlI-D and NSTX/MAST will directly measure
aspect ratio scaling of transport

® For steady-state, high-performance tokamaks, the aspect ratio scaling of
confinement is more easily projected by substituting operational constraints
for engineering parameters in scaling relations
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INCLUDING EFFECT OF ASPECT RATIO ON [y, « CHANGES R/a
DEPENDENCE OF NORMALIZED CONFINEMENT

® Confinement scaling relations converted to dimensionless parameters
_ 24 712 ¢-2.1.0.0
IPB98(y,2) Br o< p;27 A12 5% 312 foe™ fop

-1.7 f—0.6

EGB Bre p33 AT 2221 £ fop

® Include optimum tokamak scalings By o< A=12, « o< A-1/2

- -2.1 ,0.0

IPB98(y,2) Bt p;27 A6 £ fop
33 p-03 ¢-1.7 (06

EGB Broe p 33 A £ fop
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FUSION GAIN OPTIMIZES FOR A = 2.2-3.0 FOR STEADY-STATE,
HIGH-PERFORMANCE TOKAMAKS AT STABILITY LIMIT

Fixed By, K, fgq, fgg Path Fixed fge, fop path with By, ko« A-1/2
p-1 o< all2 B112 p=1 o< all2 B112 A1/A
101 —— Y —— R _
I ] I EGB
08 7 08
So06f \ T o6l
s PBO8(Y,2) Y £ | IPB98(y,2)
'= 04} 1 =04}
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0.0L 0.0L ' P
0 6 7 8 0 1 2 3 4 5 6

023-05/rs
AT FUSION FACILITY

SSSSSSSS



RECIRCULATING POWER FRACTION OPTIMIZES FOR

A=2.4-2.8 AT STABILITY LIMIT

2
2 o2f; 1

B (1—) Ra2
_ P __ YcoPF =YCDBNK °\Ua
Pcp  NIR( - fiyg) forR( - fps)

I
"=feR a2

Bc = field at centerpost (fixed maximum from stress)
c
fos = Cbs Bp/‘/_ = ZL;‘/K deyl BN

Express Bn(A) as N, A~ and K as kA~

1\2
A-20! (1 _ _) A0
(| - q, yl BNO A1/2—oc)

Amax =23

Optimize the function

foroo=12; ¢=1/2
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KEY RESULTS OF TRANSPORT DEPENDENCE ON SHAPE (A, )

@ Transport dependence on elongation and safety factor are weaker
than IPB98(y,2) relation but close to EGB relation

@ Transport dependence on aspect ratio is more apparent when the operational
constraints (B, «, fgs, fgg) are directly incorporated into the confinement
scaling relation

® For “optimum tokamak”, fusion gain is optimized between aspect ratio of
2.2 and 3.0 (depending upon which confinement scaling relation is used)

@ [f stability limit and elongation are assumed independent of aspect ratio,
then fusion gain optimizes at higher R/a
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