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I.   Optimum tokamak study by Lin-Liu/Stambaugh

II.  Comparison with similar study by Menard

III. Transport dependence on shape (A, κ)
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I.  WHAT IS THE OPTIMUM TOKAMAK?
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   Lin-Liu/Stambaugh constructed equilibria with
 — Bootstrap fraction of 99%, fully aligned
 — P´ = 0 at separatrix
 — Broad, nearly optimal, pressure profile
   Edge ITB?

   Ideal ballooning β limit found using BALOO
 — Bulk of plasma has second stability access
 — Ballooning limit occurs at a point near edge
 — Wall stabilization assumed for kinks

   Systematic shape study spanned
 — 1.5 ≤ κ ≤ 6.0
 — 1.2 ≤ A ≤ 7.0
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HIGH BETA, HIGH ELONGATION, HIGH BOOTSTRAP EQUILIBRIUM
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    A = 1.6, κ = 4.0, δ = 0.5, βT = 73%, βN = 8.0, βP = 1.6
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SYSTEMATIC STUDY OF βN-LIMIT VERSUS R/a AND κ FOR fBS = 0.99
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STRONG SHAPING (δ) IS NEEDED TO TAKE FULL ADVANTAGE
OF HIGH ELONGATION

● Beta increases with δ for κ > 3~
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KEY RESULTS OF LIN-LIU/STAMBAUGH STUDY

● Trade-off between fusion power and bootstrap current at a given normalized beta

● Shape dependence of ideal ballooning stable beta

βN = 10 (b0 + b1κ + b2κ2 + b3κ3) coth

βT βP = 25 (

( )

)1+κ2

2

2

do + d1κ
Am

1
An

fBS = CBS βP/√A

PF ∝ β2
T
 B4

( )βN
100

b0 –0.7748
b1 1.2869
b2 –0.2921
b3 0.0197

d0 1.8524
d1 0.2319
m 0.6163
n 0.5523
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II. IDEAL WITH-WALL BALLOONING LIMIT FOR FULLY
SELF-SUSTAINED EQUILIBRIA NEARLY SAME BETWEEN

MENARD’S AND LIN-LIU’S STUDIES
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III. TRANSPORT DEPENDENCE ON SHAPE (A, κ)

● While empirical confinement scaling relations of the form

● Casting confinement scaling relations in terms of dimensionless
 parameters allows the shape and aspect ratio dependences to be
 easily determined once the operational constraints are specified
 — Can choose kinetic plasma physics parameters like ρ

*
 and  ν

*
 — Can choose MHD parameters like q and βN

are fully predictive, the trade-offs between different parameters
due to operational constraints are not readily apparent

  e.g., safety factor constraint relates I, κ, A, and R

IPB98(y,2)   τ=0.0562 I0.93 n0.41 B0.15 P–0.69 R1.97 m0.19 κ0.78 A–0.58

EGB τ=0.028 I0.83 n0.49 B0.07 P–0.55 R2.11 m0.14 κ0.75 A–0.3
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DEPENDENCE OF TRANSPORT ON q AND κ

● Experiments on DIII–D resolved the ambiguity between the κ and q scalings 
 of transport by comparing
 — q scan at fixed κ
 — κ scan at fixed q
 — κ scan at fixed I

● For H–mode plasmas, the change in confinement for the above three scans
 was explained by the unified scaling

● Note that the q and κ scalings of normalized confinement are different than
 the Ip and κ scalings of τ
 ★ Converting dimensionless parameter scalings for H–mode plasmas
   on DIII–D to engineering parameter scalings gives

Bτ ∝ q95             κ
–1.4±0.6 2.2±0.6

τ ∝ I                   κ
0.76±0.14
p

0.65±0.16
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MEASURED q AND κ SCALINGS OF H–MODE TRANSPORT
ARE WEAKER THAN PREDICTION FROM IPB98(y,2)

q scanned in two ways κ scanned at fixed q

4
Bτ ∝ q–αq Bτ ∝ κ–ακ
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OPERATIONAL CONSTRAINTS ARE CRITICAL WHEN 
PROJECTING ASPECT RATIO SCALING OF TRANSPORT

● Aspect ratio affects many important dimensionless parameters
 — q, βN, ν*, fBS, etc.

● Future experiments between DIII–D and NSTX/MAST will directly measure
 aspect ratio scaling of transport

● For steady-state, high-performance tokamaks, the aspect ratio scaling of
 confinement is more easily projected by substituting operational constraints
 for engineering parameters in scaling relations

( )Ip
B
n
P

( )
ρ

*
βN
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INCLUDING EFFECT OF ASPECT RATIO ON βN, κ CHANGES R/a
DEPENDENCE OF NORMALIZED CONFINEMENT

● Confinement scaling relations converted to dimensionless parameters

● Include optimum tokamak scalings βN ∝ A–1/2, κ ∝ A–1/2

IPB98(y,2) Bτ ∝ ρ
*
–2.7 A1.2 κ2.4 β

N
1.2  fBS    fGR

–2.1 0.0

EGB Bτ ∝ ρ
*
–3.3 A1.8 κ2.2 β

N
2.1  fBS    fGR

–1.7 –0.6

IPB98(y,2) Bτ ∝ ρ
*
–2.7 A–0.6  fBS    fGR

–2.1 0.0

EGB Bτ ∝ ρ
*
–3.3 A–0.3  fBS    fGR

–1.7 –0.6
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FUSION GAIN OPTIMIZES FOR A = 2.2–3.0 FOR STEADY-STATE,
HIGH-PERFORMANCE TOKAMAKS AT STABILITY LIMIT

● Assume B = Bc (1–A–1) where Bc (= field at centerpost) is fixed

Fixed  βN, κ, fBS, fGR path

ρ
*
–1 ∝ a1/2 B1/2

Fixed  fBS,  fGR path with βN, κ ∝ A–1/2

ρ
*
–1 ∝ a1/2 B1/2 A1/4

0.0
0 2 31 4 5 6 7 8 0 21 4 53

AA
6

0.2

0.4

0.6

0.8

1.0
EGB

EGB

IPB98(y,2) IPB98(y,2)

0.0

0.2

0.4

0.6

nT
τ 

(a
.u

.)

nT
τ 

(a
.u

.)

0.8

1.0



 

1 2 3 4 5 6 7 8

fbs ~90%
fbs ~80%
fbs ~70%

A

RECIRCULATING POWER FRACTION OPTIMIZES FOR
A=2.4–2.8 AT STABILITY LIMIT

 
Bc = field at centerpost (fixed maximum from stress)

 

 
Express βN(A) as βNOA–α and κ as κOA–φ 
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KEY RESULTS OF TRANSPORT DEPENDENCE ON SHAPE (A, κ)

● Transport dependence on elongation and safety factor are weaker
 than IPB98(y,2) relation but close to EGB relation

● Transport dependence on aspect ratio is more apparent when the operational
 constraints (βN, κ, fBS, fGR) are directly incorporated into the confinement 
 scaling relation

● For “optimum tokamak”, fusion gain is optimized between aspect ratio of 
 2.2 and 3.0 (depending upon which confinement scaling relation is used)

● If stability limit and elongation are assumed independent of aspect ratio,
 then fusion gain optimizes at higher R/a


