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Is an Opportunity Emerging for Fusion in the U. S.?

Secretary of Energy – Abraham - DOE Mission and Priorities – Oct. 24, 2001
(to DOE Lab Directors and DOE)
“I would add to this list two priorities that deserve special mention.  The first
involves the unique technological contribution we can make to our energy and
national security by finding new sources of energy. Whether it is fusion or a
hydrogen economy, or ideas that we have not yet explored, I believe we need to
leapfrog the status quo and prepare for a future that, under any scenario, requires a
revolution in how we find, produce and deliver energy.”

“I intend, therefore, that this Department take a leadership role in exploring how we
can identify and use potentially abundant new sources of energy with dramatic
environmental benefits.”

Federal Reserve Chairman Greenspan - On Energy Supply – Nov. 13, 2001
(Rice University)
 “In the more distant future remains the potential of fusion power. A significant
breakthrough in this area has been sought for years but seems discouragingly
beyond reach. But success could provide a major contribution to our nation's future
power needs. The input costs of fusion power would be minor, and it produces
negligible nuclear waste or pollutants.”

What should we do to be ready?

DMeade
By end of January conduct a strategic missions review to:    ...identify new sources of energy......



Activities in the U. S. to Assess Next Steps in MFE

•  House of Representatives passed the Energy Authorization Bill (HR 4) on
August 1, 2001.  The U. S. Senate has prepared a similar bill regarding fusion.

1.  Calls for strengthening the base fusion sciences program

2. Directs DOE to submit a plan for construction of a U.S. Burning Plasma
Experiment to Congress by July 2004. In addition, DOE may also develop
a plan for United States participation in an international burning plasma
experiment for the same purpose, if it’s construction is highly likely and
cost effective for the U. S. relative to a domestic experiment.

•  Fusion Energy Sciences Advisory Committee (FESAC) endorses
recommendations of FESAC Burning Plasma Panel.

•  National Research Council is preparing a proposal to review burning plasma
physics as required by HR 4 and recommended by FESAC.

•  Preparations are beginning for a Snowmass Summer Study 2002 that will
emphasize burning plasmas.  International participation is encouraged.

Full text on  http://fire.pppl.gov



Fusion Frontiers to be Explored by the 
Next Stage of Fusion Research

•  Burning Plasma Physics 
  - strong nonlinear coupling inherent in a fusion dominated plasma
 - access, explore and understand fusion dominated plasmas

•  Advanced Toroidal Physics
 - develop and test physics needed for an attractive MFE reactor
 - couple with burning plasma physics

•  Boundary Physics and Plasma Technology (coupled with above)
 - high particle and heat flux
 - couple core and divertor
 - fusion plasma - tritium inventory and helium pumping

•  Neutron Resistant Materials (separate facility)
 - high fluence testing using “ point”   neutron source

•  Superconducting Coil Technology does not have to be coupled to 
   physics experiments - only if needed for physics objectives

•  Nuclear Component Testing should wait for the correct reactor materials
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Tokamak burning plasma infrastructure could also provide facility to test non-tokamak configurations.

DMeade
(The overall Multi-Machine Strategy includes IFE)



Outline

•  Objectives for a Next Step Experiment in Magnetic Fusion

•  Burning Plasma Performance Considerations

•  Compact High Field Approach - General Parameters

•  Advanced Tokamak Longer Pulse Possibilities

•  Summary

 



Next Step Option Program Advisory Committee

•  Members:  Tony Taylor (Chair), Gerald Navratil, Ray Fonck, David Gates,
Dave Hill, Wayne Houlberg, Tom Jarboe, Mitsuro Kikuchi, Earl Marmar, Raffi
Nazikian, Craig Petty, Rene Raffray, Paul Thomas, James VanDam

•  Meetings
July 20-21, 2000 at General Atomics, San Diego, CA.
January 17-18, 2001 at MIT, Cambridge, MA
July 10-11, 2001 at Univ. Wisc, Madison, WI

•  Charge for First  meetings
Scientific value of a Burning Plasma experiment
Scientific readiness to proceed with such an experiment
Is the FIRE mission scientifically appropriate?
Is the initial FIRE design point optimal?

•  Extensive PAC Reports provide detailed recommendations for the FIRE activity
to address.  NSO-PAC reports are on FIRE (http://fire.pppl.gov),  will discuss in
more detail under FY 2001-03 Plans.

DMeade
November 29-30, 2001 at LLNL, Livermore, CA
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Preparation for Snowmass Assessment



Contributors to the FIRE Design Study

FIRE is a design study for a major Next Step Option in magnetic fusion and is
carried out through the Virtual Laboratory for Technology.  FIRE has benefited
from the prior design and R&D activities on BPX, TPX and ITER.

Advanced Energy Systems
Argonne National Laboratory

DAD Associates
General Atomics Technology

Georgia Institute of Technology
Idaho National Engineering Laboratory

Lawrence Livermore National Laboratory
Massachusetts Institute of Technology

Oak Ridge National Laboratory
Princeton Plasma Physics Laboratory

Sandia National Laboratory
Stone and Webster

The Boeing Company
University of Illinois

University of Wisconsin



Fusion Science Objectives for a
Major Next Step Burning Plasma Experiment

Explore and understand the strong non-linear coupling that is
fundamental to fusion-dominated plasma behavior (self-organization)

•  Energy and particle transport (extend confinement predictability)

•  Macroscopic stability (β-limit, wall stabilization, NTMs)

•  Wave-particle interactions (fast alpha particle driven effects)

•  Plasma boundary (density limit, power and particle flow)

•  Test/Develop techniques to control and optimize fusion-dominated plasmas.

•  Sustain fusion-dominated plasmas - high-power-density exhaust of plasma
particles and energy, alpha ash exhaust, study effects of profile evolution due to
alpha heating on macro stability, transport barriers and energetic particle modes.

•  Explore and understand various advanced operating modes and configurations in
fusion-dominated plasmas to provide generic knowledge for fusion and non-fusion
plasma science, and to provide a foundation for attractive fusion applications.



Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q ≥ 5 ,     ~ 10 as target,    ignition not precluded

fα = Pα/Pheat ≥ 50% , ~ 66% as target, up to 83% at Q = 25

TAE/EPM                  stable at nominal point, able to access unstable

Advanced Toroidal Physics

fbs = Ibs/Ip                    ≥ 50% as target AT

βN ~ 2.5, no wall ~ 3.6, n  = 1 wall stabilized

Quasi-stationary

Pressure profile evolution and burn control > 10 τE

Alpha ash accumulation/pumping > several τHe

Plasma current profile evolution 1 to 3 τskin

Divertor pumping and heat removal several τdivertor, τfirst wall

DMeade
up to 75% allowed

DMeade
(Elmy H-Mode)
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(Reversed Shear ITB)
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Optimization of a Burning Plasma Experiment
• Consider an inductively driven tokamak with copper alloy TF and PF coils 
precooled to LN temperature that warm up adiabatically during the pulse.

•  Seek minimum R while varying A and space allocation for TF/PF coils for a 
specified plasma performance - Q and pulse length with physics and eng. limits. 

S. Jardin and 
C. Kessel

2.2 ττττJ

1.5 ττττJ

 0.93 ττττJ

0.45 ττττJ

ττττJ =  flat top time/ current redistribution time

What is the optimum for advanced steady-state modes?

ITER - FEAT FIRE

ARIES-RS (8T),ASSTR (11T)

6 T

8 T 2.8 ττττJ

ITER98(y,2)
scaling

DMeade
n(0)/<n> = 1.2



Fusion Ignition Research Experiment
(FIRE)

Design Features
• R =   2.14 m,   a = 0.595 m
• B =     10 T
• Wmag= 5.2 GJ
• Ip =     7.7 MA
• Paux ≤ 20 MW
• Q ≈ 10,  Pfusion  ~ 150 MW
• Burn Time ≈ 20 s
• Tokamak Cost ≈ $375M (FY99)
• Total Project Cost ≈ $1.2B

at Green Field site.

http://fire.pppl.gov
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Attain, explore, understand and optimize magnetically confined fusion-dominated plasmas.

DMeade
Mission:
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FIRE Baseline for Snowmass Assessment

FIRE Cross/Persp- 5/25//DOE

Compression Ring

Wedged TF Coils (16), 15 plates/coil*

Double Wall Vacuum
 Vessel   (316 S/S)

All PF and CS Coils*
OFHC C10200

Inner Leg BeCu C17510, (HTS later) 
 remainder OFHC C10200

Internal Shielding
( 60% steel & 40%water)

Vertical Feedback and Error

W-pin Outer Divertor Plate
Cu backing plate, actively cooled

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

Passive Stabilizer Plates
space for wall mode stabilizers

Direct and Guided Inside Pellet Injection

AT Features

• DN divertor

• strong shaping

• very low ripple

• internal coils

• space for wall
   stabilizers

• inside pellet
  injection

• large access ports

DMeade
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< 0.3%

DMeade
Field Correction Coils
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2.14m



Basic Parameters and Features of FIRE
R, major radius 2.14 m
a, minor radius 0.595 m
κx, κ95                                                    2.0, 1.77
δx, δ95                                                    0.7, 0.55(AT) - 0.4(OH)
q95, safety factor at 95% flux surface >3
Bt, toroidal magnetic field 10 T with 16 coils,  0.3% ripple @ Outer MP
Toroidal magnet energy 5.8 GJ
Ip, plasma current 7.7 MA
Magnetic field flat top, burn time  28 s at 10 T in dd, 20s @ P  dt ~ 150 MW)
Pulse repetition time  ~3hr @ full field and full pulse length
ICRF heating power, maximum 20 MW, 100MHz for 2ΩT, 4 mid-plane ports
Neutral beam heating None planned, (NI-NBI backup to be evaluated)
Lower Hybrid Current Drive                   Upgrade for AT-CD phase, ~20 MW, 5.6 GHz 
Plasma fueling Pellet injection (≥2.5km/s vertical launch inside

mag axis,  guided slower speed pellets)
First wall materials Be tiles, no carbon
First wall cooling Conduction cooled to water cooled Cu plates
Divertor configuration Double null, fixed X point, detached mode
Divertor plate W rods on Cu backing plate (ITER R&D)
Divertor plate cooling Inner plate-conduction, outer plate/baffle- water
Fusion Power/ Fusion Power Density 150 - 200 MW, ~6 - 8 MW m-3 in plasma
Neutron wall loading ~ 2.3 MW m-2
Lifetime Fusion Production 5 TJ (BPX had 6.5 TJ)
Total pulses at full field/power 3,000 (same as BPX), 30,000 at 2/3 Bt and Ip
Tritium site inventory Goal 5 - 15 g, (< 30 g,  Low Hazard Nuclear Facility)

DMeade
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Limits pulse length in some AT modes



FIRE is a Modest Extrapolation in Plasma Confinement

ωcτ = B τ
ρ* = ρ/a
ν* = νc/νb
β

Dimensionless
 Parameters ITER-EDA,  Q ~ 50

ITER-FEAT, Q = 10X X

BτEth

BτEth ~ ρ*–2.88 β –0.69 ν* –0.08

Similarity 
Parameter

B R 5/4

Kadomtsev, 1975

DMeade
X

DMeade
FIRE,  Q = 10
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Transport Issues/Benefits from a Major Next Step Tokamak Experiment

•  Predicting confinement and performance is a central issue for a next step
experiment that challenges our understanding and predictive capability.

•  Methods Available

1.  0-D Statistical based models (eg ITER scalings for H-Mode)
dimensionless variables ala wind tunnel
projections from individual points(Barabaschi) or similar points(DM)

2.  1 1/2-D (WHIST, TSC, Baldur, ASTRA)
profiles and time evolution

3.  Physics based core transport models
- gyrokinetic/gyrofluid (PPPL-IFS, GLF 23)
- multi-mode model

•  What experimental capabilities or features in a next step experiment are
needed to better resolve and understand transport issues?

DMeade
4.  Edge Pedestal and density limit models



Empirical Guidelines for Estimating Confinement

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

τE = 0.144 I0.93 R1.39a0.58 n20
 0.41 B0.15Ai

0.19  κ0.78 Pheat
-0.69

Density Limit -  Based on today's tokamak data base

n20 ≤ 0.8 nGW  =  0.8 Ip/πa2,  

Beta Limit - theory and tokamak data base

β ≤ βN(Ip/aB),     βN < 2.0 conventional,  βN ~ 3.5  advanced mode

H-Mode Power Threshold - Based on today's tokamak data base

Pth  ≥  (2.84/Ai) n0.58 B      Ra        ,  same as ITER-FEAT   

Helium Ash Confinement τHe = 5 τE,       impurities = 3% Be, 0% W

DMeade
0.82
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0.81
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DMeade
 



FIRE’s Operating Density and Triangularity are 
Near the Optimum for the Elmy H-Mode 

Ongena et al, JET Results EPS 2001

•  The optimum density for the
    H-Mode is  n/nGW ≈≈≈≈ 0.6 - 0.7 

•  H-mode confinement
   increases with δδδδ

 •  δδδδ ≈≈≈≈ 0.7 FIRE

 •  δδδδ ≈≈≈≈ 0.5 ITER-FEAT

•  Elm size is reduced for 
   δδδδ > 0.5

•  Zeff decreases with density
   (Mathews/ITER scaling)

•  DN versus SN ?

Cordey et al,  H = function ( δδδδ, n/nGW, n(0)/<n>) EPS 2001

FIRE H-Mode 4



Parameters for H-Modes in Potential Next Step D-T Plasmas
ITER-FEAT (15 MA): Q = 10, H = 0.95,  FIRE*(7.7 MA): Q = 10, H = 1.03,  JET-U (6 MA):  Q = 0.64, H = 1.1
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Projections to FIRE Compared to Envisioned Reactors

ARIES-AT, Najmabadi,

0
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H98(y,2)

Q

JET H-Mode** Data Base

Q = 50

FIRST “ITER” Reactor
Toschi et al

FIRE
10T, 7.7MA, R = 2.14m, A = 3.6

1.7 τskin

n/nGW = 0.7

Pfusion = 150 MW

n(0)/<n>V = 1.2

n(0)/<n>V = 1.5
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JEK - BP2001
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D

Pedestal Temperature Requirements for Q=10

Device Flat ne Peaked ne Peaked ne w/ reversed q

IGNITOR

FIRE

ITER-FEAT

5.0 5.15.1

4.0 3.44.1

5.6 5.45.8

*

* n    / n      = 1.5 with n      held fixed from flat density caseeo ped ped

11.4 MW auxiliary heating

l

l 50 MW auxiliary heating

v

v 10 MW auxiliary heating

w

w flat density cases have monotonic safety factor profile

DMeade
Need a model for the pedestal temperature, FIRE has the advantage of highest triangularity and  low density  n/n       =  0.6 - 0.7
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GW
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Physics Based Model GLF23 Predictions of
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*
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J. Kinsey and R. Waltz
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R = 2.14m, A = 3.6, 10 T, 7.7 MA, ~ 20 s flat top

Alpha Power

Auxiliary Power

Ohmic Power

1 1/2-D Simulation of Elmy H-Mode in FIRE (TSC)

•  ITER98(y,2) scaling with H(y,2) = 1.1, n(0)/<n> = 1.2, and n/nGW = 0.67

•  Burn Time ≈ 20 s  ≈ 21 τE ≈ 4 τHe ≈ 2 τskin  

Q ≈ 12

DMeade
Q = Pfusion/(Paux + Poh)



JEK - BP2001
NATIONAL FUSION FACILITY

S A N  D I E G O

DIII–D
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Kinsey, Waltz and Staebler
UFA BPS Workshop 2 
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GLF23 Predicts an Internal Transport Barrier in FIRE as a
  Result of Shafranov-Shift Stabilization of the ITG Mode

DMeade
•  Barrier only forms if some density peaking is present.

DMeade
•  Diamagnetic component of ExB shear helps after ITB is formed.
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FIRE could Access the “Long  Pulse” Advanced 
Tokamak Mode Frontier at Reduced Toroidal Field.

JET, JT-60U

KSTAR

TPX

Note: FIRE is ≈ the same physical size as TPX and KSTAR. 
At Q = 10 parameters, typical skin time in FIRE is 13 s and  is 200 s in ITER-FEAT .

DIII-D

  FIRE  TF Flattop 
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JT-60 Mod •
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The Number of Skin Times curve assumes a constant skin time of 13s.
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The main limit to long pulses is the divertor and first wall
 - a generic problem for magnetic fusion.



TSC Simulation of a “Fusion Dominated” Plasma
8.5 T, 5.4 MA, t(flattop) = 32 s

H(y,2) = 1.6,  
ββββN  = 3.5,        n(0)/<n> = 1.5

Q = 7.8, fαααα = 61%

fBS = 65%



FIRE Would Explore the Edge 
 Physics and  In-Vessel Technology Frontier

  JET FIRE ARIES-RS 
Fusion Power Density (MW/m3)  0.2  5.5 6 

Neutron Wall Loading (MW/m2)  0.2 2.3 4 

Divertor Challenge (Ploss/NR)  ~5 ~10  ~35  
  
 Power Density on Div Plate (MW/m2) 3 ~15-19 → 6 ~5

Burn Duration (s)  4 20 steady 

~ 3X

ARIES-RS The “Goal”

B = 8 T
R = 5.5 m

Pfusion 
= 2170 MW

Volume
 = 350 m3

FIRE

R = 2.14 m
B = 10 T

Pfusion 
= ~ 150 MW

Volume 
= 27 m3

DMeade
*

DMeade
* Note:  FIRE outer divertor plate is in steady-state



FIRE’s Divertor  can Handle Attached  
 (<25 MW/m2)and Detached(5 MW/m2) Operation

DMeade
P           < 200 MW

DMeade
fusion
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Reference Design  is semi-detached operation with <15 MW / m2.



Divertor Module Components for FIRE

Two W Brush Armor Configurations
Tested at 25 MW/m2

Finger Plate for
Outer Divertor Module

DMeade
Sandia
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Carbon targets  used in most experiments today are not compatible with tritiun inventory requirements of fusion reactors.  



ITER-FEAT

R = 6.2 m
B = 5.5 T

Cost Drivers  IGNITOR FIRE JET U PCAST ARIES-RS ITER-FEAT

Plasma Volume (m3)   11 27 108 390 350 828
Plasma Surface (m2)  36  60 160 420 420 610

Plasma Current (MA)  12 7.7 6 15 11.3 15
Magnet Energy (GJ)  5 5 1.6 40 85 50
 
Fusion Power (MW)  100 150 30 400 2170 400

Burn Duration (s), inductive  ~1 20 10 120 steady 400
                                    ττττ    Burn/ ττττ    CR   ~2 0.6 1 steady 2

Cost Estimate ($B-2000$)   1.2 ~0.6 6.7 10.6* 4.6

Potential Next Step Burning Plasma Experiments

FIRE

R = 2.14 m
B = 10 T

JET U

R = 2.9 m
B = 3.8 T

PCAST 5

R = 5 m
B = 7 T

ARIES-RS (1 GWe)

B = 8 T

R = 5.5 m

AR RS/ITERs/PCAST/FIRE/IGN

IGNITOR

R = 1.3 m
B = 13 T

* first , $5.3 B for 10th of a kind



Timetable for Exploring the Burning Plasma Frontier

Year
1990 20001995 2005

10

8

6

4

2

0
2010 2015

TFTR JET

ITER(?)

Fusion
Gain

National Ignition Facility (NIF)
Laser Megajoule (LMJ)

U.S Burning Plasma
FIRE (?)

•  Even with ITER, the MFE program will be unable to address the alpha-dominated 
burning plasma issues for ≥ 15 years.

•  Compact High-Field Tokamak Burning Plasma Experiment(s) would be a natural 
extension of the ongoing “advanced” tokamak program and could begin  alpha-
dominated experiments by ~ 10 years.

•  More than one high gain burning plasma facility is needed in the world program.

•  The Snowmass 2002 Summer Study will provide a forum to assessing  approaches.
The NRC Review in 2002 will assess contributions to broader science issues..  

??

Alpha Dominated



2001 2002 2003 2004 2005

∆∆∆∆

∆∆∆∆∆∆∆∆

∆∆∆∆

FY06 DOE FY06 Cong FY06 Appropriations

Later 
Construction Start

∆∆∆∆

FESAC Recommendation and ITER Plan for Burning Plasmas

FY05 Cong FY05 Appropriations

Early Construction Start∆∆∆∆

ITER Plan

2004 Fusion Assessment 
(FESAC Priorities Report)

∆∆∆∆

CY

Plan for U.S  BP to Congress and 
maybe also a Plan to join Intern'l BP

HR 4 - Securing America's Energy Future

Community Outreach and Involvement

NSO Assessment

Snowmas 2002∆∆∆∆
∆∆∆∆

FESAC Action

NRC Review

DOE Decision Process

ITER Negotiations

ITER - EDA FY05 DOE

• Japan Site Offer
• EU Site  Offer
• Draft Agreement

•  Preferred Site

• Final Agreement

• Final Agreement Signed

• ILE

FESAC Recommendations 
on Burning Plasmas

August 2, 2001

• ITER Const Authorization



Summary

•  A Window of Opportunity may be opening for U.S. Energy R&D.  We should 
be ready.  The Modular or Multi-Machine Strategy has advantages for 
addressing the science and technolgy issues of fusion. 

•  A compact high field tokamak, like FIRE, has the potential:

•  address the important burning plasma issues,
•  investigate the strong non-linear coupling between BP and AT,
•  stimulate the development of reactor relevant PFC technology, and

•  Some areas that need additional work to realize this potential include:

•  Apply recent enhanced confinement and advanced modes to FIRE 
•  Understand conditions for enhanced confinement regimes
•  Compare DN relative to SN - confinement, stability, divertor, etc
•  Complete disruption analysis, develop better disruption control/mitigation.
•  Respond to FIRE Engineering Review and NSO PAC on  specific

physics R&D and engineering design and R&D issues.

DMeade
http://fire.pppl.gov

DMeade
•  provide generic BP science and possibly BP infrastructure for
   non-tokamak BP experiments.




