Target power loads during disruptions in ASDEX Upgrade

Arne Kallenbach

on behalf of G. Pautasso, A. Herrmann and C. Fuchs

• database on power load in ASDEX Upgrade lower div II and div IIb

• temporal evolution of the disruption

spatial distribution of power

• role of radiation on power load

bolometers and thermography for power balance

100 bolometer chords time resolution 1 ms

2 IR cameras for the lower target time resolution 0.12 - 1 ms spatial resolution 1-2 mm

the power deposition on the lower divertor (Div. II and Div. II-b) is analysed in this work.

variety of time histories during disruptions

the power deposition on the divertor plates during the thermal quench lasts 2-3 ms.

there is no one typical power deposition time history during disruption but a variety of them.

shot range: 13000-17500 (Jan. 2000 - Mai.2003)

Divertor II-lyra configuration: 30 discharges (shot # < 14200)

```
Divertor II-b configuration: 14 discharges (shot # > 14200)
```

Parameters:

```
plasma current (I_p) = 0.6 - 1 \text{ MA}
q_95 = 2.5 - 6
thermal energy (E_th) = 50 - 500 kJ
magnetic energy (E_mag) = 0.7 - 1.8 MJ
disruption duration = 10 - 30 ms
```

different disruption causes, not yet analysed

$\Delta E_mag + \Delta E_th + \Delta E_in = \\\Delta E_rad + (\Delta E_div - \Delta E_div_rad) + \Delta E_em$

Energy balance in the **0** thermal quench and **0** overall

#13461

(MJ)	ΔE_mag	+ ∆E_th	$\approx \Delta \mathbf{E} \mathbf{Con} + \Delta$	E_rad +	- ∆E_struc
0	> 0	0.19	< 0.25	0.16	~ 0
0	1.7	0.19	(0.8-0.5=0.3)) 1.2	~ 0.15

#13540									
(MJ)	ΔE_mag	+ ∆E_th	$\approx \Delta \mathbf{E} \mathbf{Con} + \Delta \mathbf{I}$	E_rad	+ ∆E_struc				
0	> 0	0.16	< 0.15	0.13	~ 0				
0	1.0	0.16	(0.5-0.4=0.1)	0.7	~ 0.15				

energy balance is consistent within uncertainties

energy balance

A. Kallenbach, 3rd ITPA SOL and Divertor Topical Group meeting, St. Petersburg, July 2003

halo currents distribution

- In the second second
- ◊ quite symmetric in toroidal direction on time scales > 1 ms
- ◊ toroidal asymmetries by factor 4 observed on very short time scales (0.2 ms)

most of the disruption power is radiated in divertor region

□ Most of the energy deposited on the divertor plates during thermal quench is conducted/convected.

□ Most of the energy deposited on the divertor plates during <u>current quench</u> is <u>radiated</u>.

Langmuir probes measure strong ion flux during current quench

- largest ion fluxes on top end of divertor
- quiet phase in lower part of divertor between thermal and final quench
- strong ion fluxes during current quench suggest convective/conductive load

IPP

3rd ITPA SOL and Divertor Topical Group meeting, St. Petersburg, July 2003

comparison of Isat and thermography during energy and current quench

- It absence of ion flux in upper div suggests dominant radiation there during this phase
 - clear correlation of ion flux and power footprint in lower part
- ◊ strong ion fluxes in upper part during currrent quench not all radiative load

3rd ITPA SOL and Divertor Topical Group meeting, St. Petersburg, July 2003

Conclusions on disruptions in ASDEX Upgrade divertors II + II-b

- the time history of the power deposition on the lower divertor plate may change from shot to shot
- □ the thermal quench phase lasts 2-3 ms
- □ the power profile is broad and extends outside of the divertor plates
- **the energy balance is consistent within the uncertainties**
- an amount of energy equivalent and larger than the thermal energy of the pre-disruptive plasma is found on the divertor during the thermal quench. this energy is mostly deposited by convection and conduction
- up to 45% of the total energy of the plasma is found on the divertor plates most of it is deposited as radiation
- □ the divertor plates are rather uniformey loaded with power (on a time scale \ge 4 ms).