
Schmid Klaus, 2002

First results from US/EU collaboration

• Experimental setup

• Be plasma concentrations

• Fluence dependence of chemical erosion

• Influence of Be seeding on chemical erosion

• Temperature dependence of Be sputtering

• Summary and Outlook
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Experimental setup

• Quantitatively calibrated visible 
spectroscopy 

• Steady state plasma source.
ΓΓΓΓD ∼ 10∼ 10∼ 10∼ 1018181818 cm-2 s-1

Te~ 6eV
ne~ 1012 cm-3 

• MBE-Oven for Be seeding
Cbe ~ 0.1% to 1%

• In-situ surface analysis 
chamber.

• Reciprocating double Langmuir
Probe

• Sample can be biased up to 
200 V

• Sample is Plasma heated
TS ~ 60°C to 1000°C

Ex-Situ: TDS, SEM + EDX & (soon) WDS
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Experimental setup

Sample change Decontamination
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Be plasma concentrations

Spectroscopically measured axial Be II (Be 1+) concentrations scans
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Oven II (clogged)

• Be concentration up to several percent possible (green plasma incident)  

• For Te >= 6 eV all Be is ionized, (as expected from ionization length of ~ 1 cm @ Te = 6eV)
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Fluence dependence of chemical erosion
Initial conditions

• Polished, pyrolythic graphite samples

• Only detectable (EDX) impurity O 

• Samples are cut parallel to graphite 
planes

• Degassed at 1000°C for 20 min

SEM image before exposure
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Fluence dependence of chemical erosion
Plasma stability
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(D. G. Whyte 2001)

Changes in Dγγγγ and D/XB during exposure

Plasma is constant through out exposure within error bars of the Langmuir probe

• Changes in ne result in a ~ 3% change in D/XB
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Changes in CD background

• CD-Band background increases (~8 %) 
due to heating/erosion of a-CH from 
vessel walls
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Fluence dependence of chemical erosion

• CD-Band intensity drops ~ 20 % and 
continues to drop

• Exp. fit indicates e-folding time of ~ 3000 s

• Formation of „grass“ like structures

• EDX/XPS/AES Show no Mo, Be, B on surface

SEM image of sample after exposure
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Normalized intensity CD/Dγγγγ vs. exposure time

Experiment I
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SEM image after exposure
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• Again „Grass“ formation

• Large crater like objects appear

• Traces of Mo (~ 1%) found on sample

Fluence dependence of chemical erosion

• CD band drops by 40 % 

• Drop levels off at about 2.5 1022 cm-2

• Weight change indicated net erosion

Experiment II

• Sample surface is recessed

• Can not be explained by D\XB(ne)
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Fluence dependence of chemical erosion
Experiment III

• No change (measurable) in CD-band at 
low temperatures 

• „Grass“ starts to evolve but does not reach 
the height as for high temperatures

SEM image after exposure
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Fluence dependence of chemical erosion

Surface non uniformities + Impurities
lead to initial surface roughing

“Model“

Angular dependence of physical 
sputtering steepens slopes

Reflection of particles increases 
flux/erosion in between structures

Ongoing erosion between structures leads
to  formation of deep canyons

Eroded species can only partially 
escape from canyons (redeposition) Reduction in net erosion Reduction in net erosion 
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Influence of Be seeding on chemical erosion

• 60% drop with Be in CD band

• 40% drop without Be in CD band

SEM image after exposure
(330° C sample temp., Be seeding)

• Surface is covered with „tree trunks“

• Top of trunks contain Mo & Be

• Final Be surface concentration: 15 % (AES)

Fluence dependence & Be seeding
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Temperature Ramp, Bias -50V
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Influence of Be seeding on chemical erosion

• Clear dependence of CD-band intensity on Be oven temperature  / Be plasma concentration

• Increased Be sputtering at 50 V bias reduces Be sample concentration

Temperature ramps

yields less reduction in chemical erosion



Schmid Klaus, 2002

Influence of Be seeding on chemical erosion
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Simulation:
 50 eV Be, D -> C 

pure physical sputtering

Simulated Be surface concentration in equilibrium
vs. Be plasma concentration
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• Despite the observed morphology changes, simulation still gives correct order of magnitude

Be surfaces vs. Plasma concentration

• Plasma concentrations ~ 2% should result in a fully Be covered surface
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Temperature dependence of Be sputtering
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Increase in Be flux / erosion yield

• Strong increase of Be erosion yield above 800 °C • Can not be explained by normal evaporation

Experimental observations
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Temperature dependence of Be sputtering
Possible explanations

• Thermal spike due to near surface energy deposition ?

Would be independent of surface temperature

• Be diffuses thru BeO surface layer àààà Be with lower surface binding energy and 
enhanced sputtering ? 

Decrease in surface binding energy cannot 
explain increase by factor of three or more

• Evaporation of weakly bonded surface atoms created by the bombardment ?
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ü Binding energy of Be surface atoms 1 to 2 eV

ü Fit to Be flux vs. Temperature yields an 
activation energy of 1.7 eV

Lifetime of created surface atoms
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Catcher probe manipulator

• Manipulator has been manufactured 
at IPP and delivered to UCSD

• Will be installed and tested in January

Sample

Beam dump

Sample lock
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Summary

• CD band intensity / chemical erosion drops with fluence, probably due to changes 
in the surface morphology

• Be plasma seeding reduces CD band intensity / chemical erosion 

? Chemical effect
? Surface coverage / shielding
? Surface morphology

Yet to be determined

• Be surface concentration quickly increases with Be plasma concentration

• Be erosion exhibits a strong temperature dependence above 800 °C

→ Most probably due to evaporation of weakly bonded 
surface atoms created by bombardment
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Outlook

Carbon/Beryllium:

Experimental:

• Setup new spectroscopy system: Camera  + ADC

Simulation:

• Perform MD calculation of Be sputtering by D to explain temperature dependence

• Repeat experiment with different type of carbon (POKO)
• Measure quantitatively the reduction of chemical erosion as function of Be 
plasma concentration

• Measure H retention as function of Be plasma concentration
• Measure a possible reduction of physical sputtering

• Codeposition experiments with catcher probe

• Install catcher probe 

• Investigate morphology changes during high fluence He bombardment
• Influence of heavy impurities (Xe, Ne) on reduction of chemical erosion


