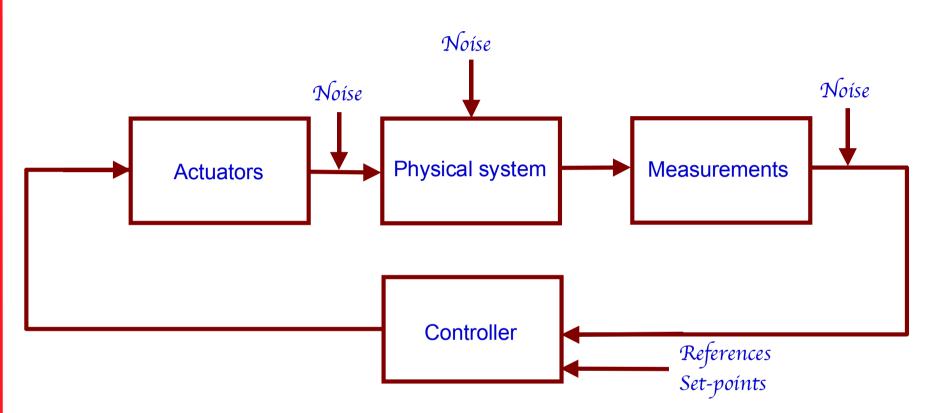


Plasma Control on Existing Devices Experience Gained

Jo Lister

CRPP - EPFL

- Useful definition of control
- □ Early control
- Evolution of equilibrium control through to today experiments
- Evolution of equilibrium control through to today modelling
- Emerging pattern
- Outstanding issues
- □ Sorry, no citations, this is not a review, not even *** is mentioned !


Useful definition of feedback control for our purposes

- "Moving the state of a system from a given state to another state in a finite time"....and less formally.....
- "Changing the parameters from their natural values to desired values, within a useful time delay and within the limits of the actuators"
- □ We therefore exclude trivial cases such as:

CRPI

- Control of the ohmic current profile in steady state by an electric field
- Control of the steady state plasma density profile using a gas valve

Schematic of feedback control for our purposes

□ This picture can be the real thing to control

- □ It can be the full model of the thing to control
- □ It can be a linearised model of the thing to control
- □ It can be a simplistic model of the thing to control

What have we learned ? Decrease+Understand / Money? Increase+Speed+Understand / Money Noíse Noíse Noíse Physical system Measurements Actuators Inventive+Modelling+Validation / Range of validity Precision+Speed / Money Controller References Set-points Inventive+Modelling+Speed

- □ First came circular plasmas
 - Preprogrammed vertical field and transformer current, gas pre-fill
 - Problem, hitting the wall when parameters change
- □ Feedback control of radial position
 - Feedback on the radial position, using the Shafranov equation for the vertical field model, assuming time-varying β and I_i
 - > Problem, sensitivity of operation to q, lack of current control
- □ Feedback control of plasma current

- Feedback on Ip, via the transformer primary
- Most of the problems were electrotechnical, to have the controllable actuators, moving from capacitor banks to thyristor supplies
- No real difficulties, measurements OK, system stable errors were only drifts and offsets, easily recovered "à la Russe"

□ Then came non-circular plasmas and partial redundancy of coil currents

- Problem 1 need to diagnose the shape or other equilibrium parameters
- Problem 2 systems are no longer orthogonal like B_v, I_{oh}, B_r, B_t
- Problem 1 was solved by
 - Estimating the gap between separatrix and wall, using Bpol flux extrapolation
- Problem 2 was solved by

- Either using the nearest coil and hoping the system was roughly diagonal
- Or setting up a "decoupling matrix" to feed the error to several supplies
- Or controlling the vacuum field and plasma position separately

Difficulties

- Precision of the gap estimators
 - Development of neural networks, function parameterisation, ad hoc fitting, real time reconstruction
- Precision of the decoupling
 - Development of better models validation of models (rather robust = tolerant to differences between model and reality)
- The integrating nature of the system, V » I, means that the feedback recovers from the general imprecision of the models used for decoupling
- In fact, even the vacuum response works really quite well on several tokamaks the ultimately simple response model
- □ Therefore we could be rather heavy-handed

- Systems were pretty stable (exception of the iron core attraction)
- □ Increasing the elongation brought the new challenge of instability
 - Shaping tended to go hand in hand with elongation, which leads to the vertical positional instability
 - In the beginning, modelling was extremely simple (3-equation rigid current model), but was close enough to the reality to generate the required estimates for the elongated tokamak designers and intuition for the tokamak operators
 - Elongation was increased experimentally with "little difficulty" on the basis of this simple modelling

Dynamics of the shape controller

- Ip, shape and radial position control are reasonable with feedforward programming plus proportional control the system is stable
- Adding low frequency gain allows the feedforward programming to be less precise and reduces drift and offset
- Adding derivative gain speeds up the response just a few "knobs"
- Dynamics of the vertical position controller
 - Proportional gain is inadequate above a certain critical elongation and derivative control is essential
 - The bandwidth of the diagnostics now becomes important, since we can no longer filter to "clean up" the power supply demand signals
 - Delay in the loop kills design criterion on diagnostics/actuators/controller

Evolution of equilibrium control - Balance sheet

Credit - satisfaction

- The methodology described up to now, corresponding to mid-1990's, allows fairly highly shaped plasmas, fairly highly elongated plasmas, fairly accurate current control and "some" operational flexibility
- Debit more work to be done
 - Power levels were increasing and the precision required by the experimental programme was increasing
 - The effect of large disturbances on large tokamaks too frequently led to loss of control and VDE's
 - ITER was on the horizon

Advanced equilibrium control - 1

Diagnostics

CRPP

- It was realised that diagnostic precision was not always adequate
 - Real-time reconstruction has been implemented on several devices
 - Work was done on improving the magnetics

Controller dynamics

- Control theory predicts that higher performance can be obtained given a higher order controller and a "sufficiently" accurate model
 - > Model validation was undertaken different models, different tokamaks
 - High order controllers were demonstrated, but no free lunch
 - Work often concentrated on optimising closed loop performance at a fixed operating point

Advanced equilibrium control - 2

□ Coil current problems

- More extreme shapes could be theoretically obtained in existing tokamaks, but they required exploring coil-current space where the relationship between shape and currents is less linearisable
 - Approach was rather seat of the pants
 - Some difficulties were experienced
 - Currents could be close to the limits
 - Mix between controller design and pragmatism is universal

Coil voltage problems

- As the performance requirements increased, the coil voltages were saturating with disturbances and the total power demand was increasing
 - Work is being done on voltage saturation control pipeline
 - Work is being done on "power management" to limit the total reactive power pipeline

Towards ITER - what is the status ?

Long pulses

- Ironically, early tokamaks had integrator drift problems, solved by integrating other drift-free diagnostics
- ➢ We are more or less long pulse in terms of L/R
- The same approaches to diagnostics will be necessary for ITER, combining drift-free low frequency responses with the magnetics

Precision

The scaled precision of the long-pulse control appears reasonable, but we do not have a totally convincing integrated demonstration yet (?)

Modelling

CRPP

Some of the models in use today would appear to be adequate to describe present experiments and be confident about predicting ITER

Controller design

- Many methods exist and seem to work adequately
- Problems will be delay, saturation, disturbance recovery and precision

Method of progressing in the past

Shape and current control presents few serious technical difficulties, given adequate care and attention

- Progress has been made on shape and current control by
 - Trial and error

- Simple modelling
- More trials, fewer errors
- More accurate, higher bandwidth measurements
- More accurate dynamical modelling
- More attention to the dynamics of controller design

Towards ITER - equilibrium integrated control

- Particularities of equilibrium control
 - Equilibrium response models are well linearised, well understood
 - Lumped (non-diffusive) models are accurate
 - High quality, low delay, linear (+-) actuators
 - Knowledge of the impact of controller design on system power requirements
- Particularities of profile control
 - Naturally diffusive

- Very coupled action of the actuators
- Highly non-linear (0+) and saturated actuators
- Weak diagnostic information and precision

Towards ITER - What haven't we done yet ?

Pending items

- AC losses optimisation only modelled new devices pre-ITER ??
- Power management only modelled all devices ??
- Saturation only modelled all devices ??
- Breakdown phase only weakly modelled ??
- Nuclear systems
 - We have not yet demonstrated a nuclear environment approach to plasma control
 - Preparation
 - Validation
 - ➤ "guarantee"
 - Autopsy

CRPP

• Even the largest devices accept an unacceptable failure rate

□ ITER will need to integrate plasma control into a "shuttle" mentality