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BURNING PLASMA WITH SELF-GENERATED CURRENT
PRESENTS NEW CHALLENGES FOR PLASMA CONTROL

• Strong coupling of transport, heating, and stability leads to a more “self-

organized” plasma than in a short-pulse, externally heated tokamak:
– Pressure  →   Fusion  →  Alpha heat  →   Thermal  →   Pressure
      profile      rate         deposition    transport                    profile
– Pressure  →   Bootstrap  →  Current  →   Thermal  →   Pressure
      profile      current            profile     transport                   profile

• MHD instabilities can intervene in these loops:
– Pressure, current density, and     →     Instability→      Profile Modification

      fast ion profiles

• Highly coupled interaction between divertor/PFC, particle control systems

• Control of such a complex, nonlinear system represents a scientific and technical

challenge, and requires an integrated, model-based approach

• Measurements required must be accurate, reliable, and have good coverage

• Today’s plasma control represents only the beginning of what will be mature and
routine in ITER…



ADVANCED TOKAMAK PLASMAS NEED VERSATILE CONTROL

• Operating point control:
– Global parameters
– Profiles
– Transport, transport barriers

• MHD stability control:
– Instability detection and avoidance
– Resistive wall mode stabilization
– Neoclassical tearing mode stabilization

• Particle control (impurities, nD, nT, …) and divertor operation
• Detection and mitigation of disruptions
• Integrated approach to plasma control



DIII-D Plasma Control Elements

ITER

Many
highly
coupled
control
loops



ADVANCED TOKAMAK OPERATING POINT CONTROL

• Control of global quantities (Ip, β, ne, etc…) is routine
• Advanced tokamaks need local profile control for

– Avoidance of instabilities
– Optimization and regulation of fusion power

• Real-time analysis of profile diagnostics is being developed
– ECE, MSE, polarimetry, …

• Current density profile control is in its infancy
– ECCD is an effective tool for modification of J(r)
– Real-time control is not yet routine

• Particle control not yet under robust and coupled control (highly
shape dependent, for example)



Local Electron Temperature Has Been Regulated

with Electron Cyclotron Heating

• 2.5 MW of ECH
applied at ρ=0.4

• Real-time ECE Te

measurement

• Variation of ±150
eV, 2.5 eV/ms

• Triangle target
waveform followed
with high accuracy
dynamic tracking
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APPLICATION OF ECCD IN HIGH-β DISCHARGE RESULTS IN
FAVORABLE CHANGES TO CURRENT PROFILE AND TRANSPORT

• Early H-mode used to
access high qmin

• βN≅2.8,  H89≅2.4
maintained by feedback

• ECCD causes increase
in central magnetic
shear

• Both Te and Ti increase
with application of
ECCD
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ECCD PEAKS CURRENT DENSITY AT RESONANCE LOCATION
AND PRODUCES STRONGER NEGATIVE MAGNETIC SHEAR

• Clear evidence of q-profile modification also seen in quiescent
double barrier (QDB) plasmas [E.J. Doyle, et al.]
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ECCD CAN TRIGGER FORMATION OF CORE TRANSPORT
BARRIERS IN ADVANCED TOKAMAK DISCHARGES

• Core barriers seen in
all four transport
channels with ECCD
– No barriers in ECH

case with no
current drive

• Gyrokinetic stability
code analysis shows
ExB shear and
Shafranov shift
stabilization are both
important
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ECH OR ECCD PROVIDES LOCALIZED CONTROL OF PROFILES
AND HIGH-Z IMPURITY ACCUMULATION

• Central high-Z impurity
accumulation due to
density peaking is critical
issue for ITB research
– Profile control is essential

• ECH reduces density
peaking, controlling
central high-Z impurity
accumulation
– ne(0)/nav decreases from

2.1 to 1.5

• Similar results with ECH
on ASDEX-U
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TRANSPORT CONTROL

• In a self-heated plasma, pressure profile must be controlled
through transport:
– ExB shear influences transport, but a burning plasma may have

little beam-induced rotation
– J(r) influences transport, but may be constrained by requirements

for current sustainment

• Control of ITB is under development:
– ECCD influenced ITB, but not tested with Ti=Te

– Requirements for diagnostic resolution?



MHD STABILITY CONTROL

• Long-wavelength kink or tearing modes can lead to disruption or
degradation of confinement

• Avoidance of instability through control of operating point:
– Real-time profile diagnostics measure operating point

• Need adequate spatial resolution and coverage for local gradients (ITB)

– Real-time calculation of relative MHD stability and approach to β-
limits

– Active MHD spectroscopy can provide direct measurement of the
approach to stability boundaries
• Need antennas to drive kHz-range magnetic perturbations
• Can serve as proxy or backup for β-limit calculation



Resistive Wall Mode Stabilized by Rotation Sustained with
Error Field Reduction

No error correction,
Below no-wall β-limit
  →Rotation sustained

With error correction,
Above no-wall β-limit
  → No RWM…
  → Rotation sustained
  → βN ~ 2 βN

NoWall

No error correction,
Above no-wall β-limit
  →RWM grows…
  →Rotation collapses
  → βN collapses

Stabilization of
RWM by
maintaining
rotation enables
sustained

βN ~ 2 βN
NoWall !



FEEDBACK CONTROL WITH INTERNAL COILS STABILIZES RWM
WITH LOW ROTATION

• Magnetic braking reduces rotation to zero in outer half of plasma
• Case without feedback becomes unstable at lower beta, even with rotation
• Feedback with internal coils maintains stability for > 100 msec
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RESISTIVE WALL MODE CONTROL

• Resistive wall mode stabilization by strong plasma rotation is
effective, but extrapolation to a burning plasma is uncertain:
– Critical rotation frequency for a burning plasma-sized device is not

known
– Burning plasma may have little beam-induced rotation
– Likely to need error field correction coils

• Resistive wall mode can be stabilized by direct feedback control:
– Needs control coils near or inside first wall
– Poloidal and toroidal coverage of coils

• See talk by G. Navratil

– Accurate detection over long pulses may require non-inductive sensors



REQUIREMENT FOR Jec IS MINIMIZED FOR
FWHM δec ~  wth NTM THRESHOLD ISLAND WIDTH

• Modeling assumes:
– Good alignment
– wth≅ √3 (wpol

2 + wd
2)1/2

• Jec for dw/dt < 0 for all w:
– i.e. 2/1 NTM stabilized

• FWHM δec≡ 4 cm
– Evaluated at outboard midplane

• wth= 3.9 cm in DIII-D, 3.7 cm in ITER
– wth/r =0.093 DIII-D, 0.029 ITER
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NEOCLASSICAL TEARING MODE CONTROL

• Neoclassical tearing modes can be stabilized by localized ECCD:
– Suppression after mode appears uses simple search or nonlinear

optimal alignment predictor
– Sustained stabilization requires real-time location of rational

surface
• Neural network or physics-based predictors based on external magnetic

data
• Real-time q-profile analysis from equilibrium reconstruction with MSE

(planned on DIII-D)

• EC power requirements depend on width of current drive layer
(needs experimental verification):
– Synchronous modulation of ECCD can improve efficiency



Disruption Detection and Mitigation with the
DIII-D Plasma Control System

• VDE detector:
– Detects plasma vertical

position past threshold
– Triggers gas injection

system to mitigate
– Trigger→quench ~5ms

• Radiated power limit
detector:

– Detects plasma radiated
power fraction
exceeding threshold

• 2/1-Locked mode detector:
– Detects presence of 2/1

NTM and growth of
locked mode with
disruptive dynamics
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INTEGRATED PLASMA CONTROL IS NEEDED FOR
OPTIMIZING ADVANCED TOKAMAK OPERATION

Integrated Plasma Control :
• Takes into account multivariable cross-coupling of complex

plasma responses to external actuators (e.g. NTM stabilization by
ECCD is affected by modification of q profile when ECCD is
applied and by transport effects of varying NTM amplitude)

• Provides high reliability, high performance control for complex
systems while minimizing machine operations development time
required

• Combines all elements of control system design process:
— Modeling (plasma response, actuators, diagnostics)
— Model validation against experimental response
— Algorithm/controller design based on validated models
— Closed loop system simulation
— Test of hardware/software implementation



INTEGRATED PLASMA CONTROL INCLUDES EFFICIENT
DESIGN AND OFFLINE TESTING TO PRODUCE HIGH

PERFORMANCE CONTROL ALGORITHMS
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EXPERIMENTAL
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(INCLUDES PLASMA  RESPONSE
MODEL, ACTUATOR MODELS,

DIAGNOSTICS, POWER SUPPLIES)



Detailed Simulations of Integrated Control Systems are
Already Being Applied to MHD Control Development
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Summary and Conclusions
• Tools are available for detailed control of the operating point in

advanced tokamak operation

– Profile control and ITB regulation are not yet routine

– Requirements on diagnostics must be considered and specified in detail;
can differ between reference and AT scenarios

• Control of MHD stability is promising

– RWM control may require rotation drive or closely coupled coils

– Power requirements for localized ECCD depend on threshold island
width and current drive width

• Other aspects of AT control (e.g. divertor, particle, fueling) need to be
addressed

• Integrated, model-based control design and operation is essential


