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OUTLINE

• Development of Improved Materials
–Advanced steels, including Nanocomposited ferritic steel
–Refractory alloys (V, Mo, W alloys)
–New welding technology
–Ceramic composites

• Brief comments on prospects for improved Cu alloys
and nonstructural materials



INTRODUCTION

• Major design criteria for structural alloys include
–Resistance to He embrittlement & swelling from (n,α) reactions

–high temperature strength
–low temperature radiation embrittlement resistance
–Safety and environmental (disposal) issues

• Major design criteria for ceramic composites include
–Thermal conductivity degradation
–Reduced-cost fabrication and joining techniques
–Safety and environmental (disposal) issues



Low uniform elongations occur in many BCC and FCC
metals after low-dose irradiation at low temperature

Uniform elongation of 
neutron-irradiated V-4Cr-4Ti
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Radiation-induced Tensile "Embrittlement" does not
Necessarily Produce Fracture Toughness Embrittlement
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Application of Thermal Defect Resistance Model
to Predict Conductivity of Irradiated SiC
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•  Maximum irradiated thermal conductivity for SiC is estimated to be ~ 10 W/m-K
    at 500°C, ~37 W/m-K at 700°C
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Current Alloy Systems Have Key Limitations
• V-4Cr-4Ti Alloy

- Thermal creep limits
- low temperature radiation

hardening
- possible He embrittlement
- requires MHD coating
- poor oxidation resistance

• Ferritic/Martensitic Steels
- low temperature radiation

hardening
- Thermal creep limits
- possible He embrittlement

• Refractory Alloys

Operating Temperature Windows 

S.J. Zinkle and N.M. Ghoniem (2000)



Key Feasibility Issues for Ferritic Steels
• Verify ferromagnetic structures are acceptable for MFE
• Expand low temperature operating limit (experiments and physical

modeling, master curve methodology)
– Development of alloys with improved resistance to low

temperature (<350˚C) embrittlement
• Expand high-temperature and dose limits

– Alloy development, including dispersion strengthened alloys
– Effect of He on creep rupture

• Resolve system-specific compatibility issues (T barrier development,
etc.)

IEA-integrated worldwide ferritic steel program is examining items
2 &3 (items 1&4 are being addressed by JA and EU programs)

Note: reduced-activation grades of Fe-9Cr ferritic/martensitic steels
(e.g., F82H) have been developed with superior properties compared to
commercial steels (e.g., HT9)



Void Swelling of Ferritic Steels is Low up to
~100 dpa (~10 MW-yr/m2), Although Further

Work is Needed to Examine He Effects

F82H (36 appm He) 10B-doped F82H (330 appm He)

HFIR irradiation at 400˚C to 51 dpa



Potential New Ferritic/Martensitic Alloy
• Dispersion-Strengthened Fe-9.5Cr-3Co-1Ni-0.6Mo-0.3Ti-0.07C steel

– High number density of nano-size TiC
precipitates

• Superior elevated-temperature strength
and impact properties compared to
conventional 9-12Cr steels

• Advantage over ODS steels:  produced
by conventional steel processing
techniques

• Present composition not for nuclear
applications; processing technique
applicable to reduced-activation
compositions

Klueh and Buck, J. Nucl. Mater. 283-287 (2000)



• Perspective
• +50 year history

• Benefits
• any desired combination of matrix

composition and dispersoid
• significant improvements in high

temperature mechanical properties

• Problems
• time-consuming & expensive
• often produces materials with:

- anisotropic properties
- coarse particles with non-uniform size

and spatial distribution

• joining and fabrication
• lack of understanding - experiment,

theory, and modeling

Oxide Dispersion Strengthening Approach
Fe-13Cr-3W-0.4Ti + 0.25Y2O3

Fe-9Cr-2W + 0.33TiO2 + 0.67Y2O3



Comparison of Tensile strength of New 12YWT
Nanocomposited Ferritic Steel vs. other ODS steels
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Recently Developed Isotropic Oxide Dispersion
Strengthened Steels Offer Potential for Improved

Performance

• Thermal creep temperature limit for martensitic Fe-8Cr steel is ~550˚C (vs. >700˚C
for several grades of ODS steel, including Kobe Fe-12Cr-3W-0.4Ti-0.25Y2O3)
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Nanocomposited 12YWT Ferritic Steel Exhibits
Excellent High Temperature Creep Strength

• Time to failure is increased by several orders of magnitude
• Potential for increasing the upper operating temperature of iron

based alloys by ~200°C

800°C and 138 MPa
- minimum creep rate

2.13 x 10-10s-1

- total strain
2.03%

14,235h



Atom Probe Reveals the Presence of Nanoclusters
in the Mechanically Alloyed 12YWT Ferritic Alloy

• Nano-size clusters
– Average composition (at.%) :

O - 23.6 ± 10.6
Ti - 19.9 ± 8.7
Y - 9.2 ± 7.8

– Size : rg = 2.0 ± 0.8 nm
– Number Density : nv = 1.4 x 1024/m3

• Original ~30 nm Y2O3 particles evolve
to (Y,Ti,O) enriched nanoclusters

• Nanoclusters not present in ODS Fe-
13Cr + 0.25Y2O3 alloy

 Isocompositional Surface3-DAP Atomic Coordinates

Y Ti OCr
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• Attractive Thermal/
Physical Properties
– high temperature capabilities

– thermal stress figure of merit

– liquid metal compatibility (Li)
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• Main problems
– low fracture toughness
– low oxidation resistance
– poor mechanical properties

of weldments



Recent research offers promise for developing
refractory alloys with improved ductility

• Controlled (50-1600 appm) additions of Zr, B, C to molybdenum
increases room temperature ductility of weldments from nearly zero
to etot~20% (M.K.Miller and A.J.Bryhan, 2001)

• Mechanically alloyed W-0.3wt%Ti-0.05wt%C (H. Kurishita et al.,
ICFRM-10, Baden-Baden, Oct. 2001)
– Avoid (W,Ti)2C brittle phase by limiting max concentration of carbon
– Small grain size (~2 µm) helps to dilute harmful oxygen grain boundary

segregation
– TiC dispersed particles provide increased toughness (appropriate fracture

mechanics tests needed to verify preliminary smooth bend bar results)



HAZ HAZWeld
Fracture occurred predominantly in

the heat affected zones

The fracture mode was
transgranular cleavage
with only small regions
of intergranular fracture.
This contrasts the
intergranular fracture
typically found in
commercial Mo welds.

ALLOY COMPOSITION
   Zr 1600 appm
   C 96 appm
   B 53 appm
   O 250 appm
   N 178 appm
   Mo balance

MECHANICAL PROPERTIES
           Strain rate: 8.3x10-4 s-1

               Mo- 30% Re filler

Ductility 19.5%
Yield Stress 481 MPa
UTS 544 MPa

Commercial Mo weld: 3% Ductility

Research performed by
M. K. Miller, Oak Ridge National Laboratory
and A. J. Bryhan, Applied Materials

IMPROVEMENTS IN THE DUCTILITY OF MOLYBDENUM 
WELDMENTS BY ALLOYING ADDITIONS OF Zr, B and C



BASE METAL HEAT AFFECTED ZONE

ATOM PROBE TOMOGRAPHY REVEALS
Zr, B and C SEGREGATION TO THE GRAIN BOUNDARIES

Research performed by
M. K. Miller, Oak Ridge National Laboratory
and A. J. Bryhan, Applied Materials

   GIE (atoms m-2)
Zr 7.6 x 1013

B 7.3 x 1012

C 1.1 x 1013

O           -3.9 x 1012

   GIE (atoms m-2)
Zr 1.3 x 1013

B 9.9 x 1014

C 9.9 x 1011

O 1.1 x 1013

•  Base metal: Zr, C and B enrichments and O depletion
•  HAZ: Heavy B and moderate Zr enrichments

FIM FIM

APT atom maps



Three-point bending stress-strain curves for
pure tungsten and developed alloys A and B.

Example of the as-rolled sheets.
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Mechanically alloyed W-0.3wt%Ti-0.05wt%C
exhibits good low temperature ductility



Comparison of Tensile (Red. in area) and Charpy
Impact Ductile-Brittle Transition Behavior of Mo-0.5Ti

• The DBTT is dependent on numerous factors, including strain rate and notch acuity
(“tensile DBTT” is not a meaningful design parameter)
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The fusion materials welding program has successfully
resolved one of the key feasibility issues for V alloys

– Results are applicable to other Group V refractory alloys (Nb, Ta)
– Use of ultra-high purity weld wire may reduce atmospheric purity requirements

Success is due to simultaneous control of impurity pickup, grain size
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Motivation for pursuing Friction Stir Welding (FSW)

• A solid-state joining process such as FSW may enable field welding
of refractory alloys (V, Mo, W), due to reduced pickup of
atmospheric contaminants

• Irradiated materials with He contents above ~1 appm cannot be
fusion-welded due to cracking associated with He bubble growth;
the lower temperatures associated with FSW may allow repair
joining of irradiated materials
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Advanced materials can be successfully joined with
friction stir welding (FSW) process

• Friction stir welding (FSW)
uses plastic deformation to join
materials.

– Homogeneous microstructure
and properties are achieved.

– SiC fibers were uniformly
distributed.

Laser

FSW

Base Metal

Sponsor: DOE Office of Transportation Technologies
Office of Heavy Vehicle Technologies

• Metal matrix composites (MMC) and oxide dispersion strengthened (ODS) alloys are
difficult to join using conventional fusion welding processes.

– Particle / fiber reinforcement deteriorate in MMCs due to melting.
– In Al-SiC MMC laser welds, SiC decomposes and forms Al4C3 carbides.



Silicon Carbide Composite Development 

Silicon carbide composite is the least-developed of the 3 main structural materials
being studied in the Fusion Materials Program, but it has the greatest potential

Very Low Radioactivation - Very High Temperature Use

Areas being actively studied

• Radiation Hardened Composite Development
• Effects of Helium on Mechanical Properties

• Radiation Degradation of Thermal Conductivity
• Swelling, Amorphization and Defect Fundamentals

Matrix

Fiber

Interphase
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Development of Radiation-Resistant SiC Composites

Ceramic fiber 0.5 µm

SiC-interlayer
Thin C-interlayer

SiC-interlayer

Bulk SiC

Until recently, SiC/SiC composites exhibited significant degradation in
mechanical properties due to non-SiC impurities in fibers causing interfacial debonding.

Upon irradiation, if fibers 
densify, fiber/matrix 
interfaces debonds

-->strength degrades
300 nm

SiC fiber

SiC multilayersSiC multilayers



US/Monbusho “Jupiter” Program

We Now Have First Radiation-Resistant SiC Composite

Bend strength of irradiated
“advanced” composites show
no degradation up to 10 dpa

1st- and 2nd generation
irradiated SiC/SiC
composites show

large strength loss after
doses >1 dpa
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Fiber K-1100  P-55  Nicalon
      Type-S

Kth (W/m-K@RT) ~950        120           15
Diameter (micron)     10          10           13
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New Developments in SiC/SiC Fabrication:
Nano-Powder Infiltration and Transient Eutectoid (NITE) Process

� Reinforcement
� Tyranno™-SA grade-3 (Ube Industries, Ltd.)
� Uni-directional
� PyC coating, 800nm-thick nominal

� Transient eutectoid process
� Uni-axial hot-pressing
� Tp ≤ 1800°C
� Pp ≤ 20MPa

� Matrix raw materials
� Beta-SiC Nano-powder (110m2/g) and

submicron (~40m2/g) powders
� Al2O3-Y2O3 complex as sintering additive
� Pre-ceramic polymer inclusion

for intra-bundle densification

Institute of Advanced Energy, Kyoto University



ArP

P

preceramic
pyrolysis

Carbon coated Tyranno
SA fiber tows

Pre-forming
through winding

Pre-treatment
by PIP

Matrix coating
by mixed slurry

Drying and
stacking

Hot pressing

Characterization

Flow Chart of the “NITE” Process
Institute of Advanced Energy, Kyoto University



“NITE”-Fabricated SiC/SiC

1780C/20MPa

10um

Institute of Advanced Energy, Kyoto University



Microstructure of “NITE”-Fabricated SiC/SiC

Tyranno™-SA

SiC Matrix

PyC Interphase

Institute of Advanced Energy, Kyoto University



Fabrication Cost of SiC/SiC by Various Processes
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CVI-SiC/SiC

Comparison of Thermal Conductivity of SiC/SiC
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Mechanical behavior of a wide range of copper alloys has
been investigated vs. strain rate and temperature
(constitutive equations for deformation and fracture)
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• CuNiBe has superior properties below 100˚C; CuCrZr and Cu-
Al2O3 have best properties at intermediate temperatures
• high temperature limits in CuNiBe and Cu-Al2O3 alloys are
associated with grain boundary phenomena
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Applications to US industry (e.g.,
USCAR) as well as fusion energy
sciences program

Mechanical behavior of copper alloys can be understood on
the basis of current materials science models of deformation



Fiber Type Supplier Remarks
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Observed Absorption of Optical Fibers
During Fission Neutron Irradiation

High loss in MF fiber may be due to neutron radiation-
induced microcracking



Conclusions

• There is a strong prospect for improvements in the capabilities of
fusion structural materials based on ongoing research
– Nanocomposited ferritic steels
– Ductile Mo and W alloys
– Hermetic, high conductivity, radiation-resistant, lower cost SiC composites

• Improved joining techniques are being applied to fusion materials
– Gas tungsten arc welding of V alloys
– Friction stir welding

• Materials which can be categorized as “reduced-activation” have
properties comparable or superior to their commercial (high-
activation) counterparts
– e.g., Fe-9Cr ferritic/martensitic steels developed for fusion

• Additional screening studies are needed to identify the most
promising nonstructural materials for fusion (organic insulators,
optical materials, etc.)


