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Fusion Prior to Geneva 1958

• A period of rapid progress in science and technology
– N-weapons, N-submarine, Fission energy, Sputnik, transistor, ....

• Controlled Thermonuclear Fusion had great potential
– Much optimism in the early 1950s with expectation for a quick solution
– Political support and pressure for quick results (but budgets were low,

$56M for 1951-1958)
– Many very  “innovative” approaches were put forward
– Early fusion reactors - Tamm/Sakharov, Spitzer

• Reality began to set in by the mid 1950s
– Collective effects - MHD instability (1954)
– Bohm diffusion was ubiquitous
– Meager plasma physics understanding led to trial and error approaches
– A multitude of experiments were tried and ended up far from fusion

conditions
– Magnetic Fusion research in the U.S. declassified in 1958
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Requirements for Development of Fusion

•  General issues understood very early

•  Reactor plasma conditions (nτE ≈ 3x1020m-3s, Ti ~ 20 keV, Q ≥ 25)
- confinement (turbulence), plasma heating

• Neutron Wall Loading ~ 4 MWm-2 (for economic attractiveness)
- material damage ~ 40 dpa/yr with low radioactive waste
- tritium breeding (TBR > 1) to complete the fuel cycle

•  Fusion Power Densities ( ~ 5 MWm-3, ––>   p ~ 10 atm)
β = �〈 p 〉/ Bc

2, MHD stability and coil engineering

•  Plasma Wall Interaction -
~ 1 MW m-2 thermal load on wall
low impurity levels, low tritium retention (< 0.5 kg-T)

•  High-duty cycle, essentially steady-state
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Fusion Plasma Physics, a New Scientific
Discipline, was born in the 1960s

• Theory of Fusion Plasmas
– Energy Principle developed in mid-50s became a powerful tool for assessing

macro-stability of various configurations
– Resistive macro-instabilities
– Linear stability analyses for idealized geometries revealed a plethora of

microinstabilities with the potential to cause anomalous diffusion Trieste School
– Neoclassical diffusion developed by Sagdeev and Galeev
– Wave propagation became basis for RF heating

• Experimental Progress (some examples)
– Most confinement results were were dominated by instabilities and ~ Bohm

diffusion
– Stabilization of interchange instability by Min|B| in mirror - Ioffe
– Stabilization of interchange in a torus by Min<B> in multipoles - Kerst/Ohkawa
– Quiescent period in Zeta due to strong magnetic shear in self-organized state
– Confinement gradually increased from 1 τB to 5-10 τB for low temp plasmas
– Landau Damping demonstrated
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The Early 1960s - The Depths of Despair for Toroidal CS

•  The first stellarator experiments in the late ʼ50s were plagued with instabilities.
Stellarators were limited by fluctuations causing “pump out, Bohm Diffusion or
anomalous diffusion.”

•  Model C was built to reduce complications of impurities (divertor) and wall
neutrals ( a = 5 cm).  Experiments in 1961-66 confirmed Bohm diffusion.

Bohm flux

KMY Thesis-Phys Fluids 10, 213 1967
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Stabilization of MHD Interchange by Geometry
(minimum |B|) in a Mirror Machine

• IOFFE IAEA Salzburg 1961,  J Nuc Energy Pt C  7, p 501  1965

Increasing
Bmultipole Well Formed
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Fusion Plasma Physics, a New Scientific
Discipline, was born in the 1960s

• Theory of Fusion Plasmas
– Energy Principle developed in mid-50s became a powerful tool for assessing

macro-stability of various configurations
– Resistive macro-instabilities
– Linear stability analyses for idealized geometries revealed a plethora of

microinstabilities with the potential to cause anomalous diffusion Trieste School
– Neoclassical diffusion developed by Sagdeev and Galeev
– Wave propagation became basis for RF heating

• Experimental Progress (some examples)
– Most confinement results were were dominated by instabilities and ~ Bohm

diffusion
– Stabilization of interchange instability by Min|B| in mirror - Ioffe
– Stabilization of interchange in a torus by Min<B> in multipoles - Kerst/Ohkawa
– Quiescent period in Zeta due to strong magnetic shear in self-organized state
– Landau Damping demonstrated in a linear experiment
– Confinement gradually increased from 1 τB to 5-10 τB for low temp plasmas
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Enhanced Confinement in Low Temperature Plasmas

FM-1

LSP
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Enhanced Confinement in Low Temperature Plasmas
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1968-69 T-3 Breaks Bohm, Tokamaks Proliferate

•  Hints of a major advance at IAEA Novosibirsk 1968, but skeptics abound

•  Thomson Scattering (Peacock/Robinson) Dubna 1969 confirms Te ≈ 1 keV

•  Energy confinement ≈ 30 τB - Bohm barrier broken for a hot plasma

•  Skeptics converted to  advocates overnight, the phone lines from Dubna  to
Princeton were busy with instructions to modify Model C.

40 years ago

From Braams and Stott
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Model C Stellarator
1969

Symmetric Tokamak (ST)
1970

Model C Stellarator Converted to Tokamak in 6 months

T-3 results are quickly reproduced
and extended.
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1968-69 T-3 Breaks Bohm, Tokamaks Proliferate

•  Hints of a major advance at IAEA Novosibirsk 1968, but skeptics abound

•  Thomson Scattering (Peacock/Robinson) Dubna 1969 confirms Te ≈ 1 keV

•  Energy confinement ≈ 30 τB - Bohm barrier broken for a hot plasma

•  Skeptics converted to  advocates overnight, Model C Stellarator converted
to Symmetric Tokamak (ST) in 6 months, T-3 results are quickly reproduced.

• During the 1970’s ~  many medium size (Ip < 1 MA) tokamaks (TFR, JFT-2a,
Alcator A, Alcator C, ORMAK, ATC, PLT, DITE,  DIII, PDX, ASDEX, ... were
built with the objectives of :

• Confinement scaling with size, Ip, n, T,.......

• Auxiliary heating (compression, ICRF, NBI, ECRH, LH )

• Current Drive (LH, NBI, ... )

• Impurity control (limiters, divertors)

40 years ago
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Fusion was Prepared for a Major Next step
when Opportunity Knocked (1973 Oil Embargo)

• Amid calls for increased energy R&D, Fusion budgets rise sharply
   -  US Fusion budget increased a factor of 15 in 10 yrs.

• Four Large Tokamaks approved for construction less than a decade after T-3

• TFTR conservative physics/strong aux heating  const began 1976

• JET shaped plasma - const began 1977

• JT-60 poloidal divertor- const began 1978

• T-15 Superconducting TF (NbSn) const began 1979

These were very large steps, taken before all the R&D was
completed.

Plasma Current 0.3 MA   =>    3MA to 7MA
Plasma Volume     1 m3   =>  35 m3 to 100 m3

Auxiliary Heating 0.1 MW  =>  20 MW to 40 MW

J. Willis, MacFusion
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1976 US Plan for Fusion

•  Logic IV became the basis for the MFE Act of 1980.

Fusion Power by Magnetic Fusion Program Plan   July 1976        ERDA – 76/110/1

FY 1978$

$500M in FY-2009$
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Optimism about Confinement Increased in
the late 1970s

• Trapped Ion instabilities were predicted in the early 1970s to be a threat to the
achievement high Ti in tokamak geometries.

• In 1978, Ti ~ 5.8 keV was achieved in a collisionless plasma reducing concerns
about Trapped Ion instabilities.  Ti was increased to 7 keV in 1980.

• In ~ 1979 Alcator A with only ohmic heating achieved nτE ≈ 1.5 x 1019 m-3 s,
consistent with  optimistic scaling τE ~ na2.

30 years ago
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Auxiliary Heating Reveals New Trends 1981

• Auxiliary heating allowed controlled experiments to reveal the scaling of
the global global confinement time.

• Confinement degradation observed as heating power was increased -
Low mode scaling would threaten objectives of the large tokamaks, and
tokamak based reactors.

τ*E

ISX-B
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H-Mode Discovered on ASDEX- 1982 

• Facilitated new insights and understanding of transport, and

• Provided the baseline operating mode for ITER

F. Wagner, IPP
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PLT PDX

S-1
ACT-1

TFTR

The Early 1980s at PPPL
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Tokamak Optimization

• By the early 80s

• It was clear tokamak performance would need to be improved, if the tokamak
were to lead to an attractive fusion power source.

•The benefits of cross-section shaping for increased confinement and beta were
demonstrated and understood in Doublet IIA and Doublet III.

• The β limit formulation by Troyon and Sykes  provided a design guide for β.

• Empirical scaling formulations (e.g., Goldston scaling) provided guidance for τE

• An understanding of divertors emerged from JFT-2a, PDX, ASDEX, DIII, DITE.

• A second generation of flexible optimized tokamaks:
DIII-D, AUG, JT-60U, PBX, Alcator C-Mod were built in the late 1980s to extend
and develop the scientific basis for tokamaks.
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Large Tokamaks Extend Plasma Parameters

• After about 6 years of construction TFTR, JET and JT-60  began
operation 1982-84.

• By the mid 80s, after  4 years of operation the plasma parameter range
had been significantly extended
– Ti~ 20 keV and ne(0)τE ~ 1.5x1019 m-3 s with neutral beam injection
– ne(0)τE ~ 1.5x1020 m-3 s  and Ti~ 1.5 keV with pellet injection
– H-Mode extended to large tokamaks, new improved performance regimes

discovered.
– Bootstrap current  and current drive extended to MA levels
– Divertor extended to large scale

• Complex Technology demonstrated at large scale

• Enabling Technology - Neutral beams, pellet injection, PFCs
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Fusion  Temperatures Attained,
Fusion Confinement One Step Away
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Significant Fusion Power (>10MW) Produced 1990s

• 1991 JET  90/10-DT, 2 MJ/pulse, Q ~ 0.15, 2 pulses

• 1993-97 TFTR 50/50-DT, 7.5MJ/pulse, 11 MW, Q ~ 0.3, 1000 D-T pulses,
– Alpha heating observed, Alpha driven TAEs  - alpha diagnostics
– ICRF heating scenarios for D-T
– 1 MCi (100 g) of T throughput, tritium retention
– 3 years of operation with DT, and then decommissioned.

• Advanced Tokamak Mode Employed for High Performance
– Improved ion confinement TFTR, DIII-D,  QDTequiv ~ 0.3 in DIII-D 1995
– nτET record => QDTequiv in JT-60U DD using AT mode 1996
– Bootstrap and current drive extended

• 1997 JET 50/50-DT  22MJ/pulse, 16 MW, Q ~ 0.65,  ~100 D-T pulses
– Alpha heating extended, ICRF DT Scenarios extended,
– DT pulse length extended
– Near ITER scale D-T processing plant
– Remote handling
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TFTR Fusion Achievements (1)
Official Objectives (1976):

1.  Study plasma physics of large tokamaks,
 2.  Gain experience with reactor scale engineering,

3.  Demonstrate D-T fusion energy production (1 to 10 MJ per pulse),

• First magnetic fusion experiment to achieve power plant fuel temperature of 200 million °C
(20 kev) (1986), and ultimately a record 510 million °C (45kev) (1995)

• Record Lawson nτE ≈ 1.5x1020 m-3 s at 1.5 keV using pellet injection in deuterium plasmas

• First magnetic fusion experiment to use fusion power plant fuel mixture of 50% deuterium
(D) and 50% tritium (T) (1993)

• First magnetic fusion experiment to produce fusion power exceeding 10 million watts (1994)

• Fusion Power Gain ~ 0.3, and factor of 106 greater than achieved when TFTR design
started. the public goal was breakeven or Q ~ 1.

• Record peak plasma pressure of 6 atm in a D-T plasma, higher than that expected in ITER.
(1994)

• Record fusion power densities of 0.3 million watts per cubic meter comparable to the
 0.5 MWm-3 expected in ITER (1994)
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TFTR Physics Achievements (2)
•  First direct measurements of long wavelength turbulence that formed the basis for an

improved theoretical modeling of turbulence (1990)

•  First observation of the "bootstrap current" in a tokamak, a self generated current that is
the key feature of steady-state tokamak fusion power plants (1986)

•  First experimental observation of the "enhanced reversed shear" confinment mode that is
now a key feature of steady-state tokamak power plant concepts. (1994)

•  First demonstration of radio frequency heating of a D-T plasma using second harmonic
tritium resonance, 1994.

•  First demonstration of mode conversion heating in a D-T plasma, 1995.

•  First observation of neoclassical tearing modes that limit output of high performance
fusion plasmas (1995)

•  First unambiguous measurements of self-heating by alpha particles in a DT fusion plasma
(1995)

•  First measurements of instabilities excited by fusion alpha particles (1996).
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TFTR Engineering Achievements (3)

•  First to identify and quantify the retention of tritium in graphite plasma facing components
as a major issue for fusion power plants using trace tritium (1989) and 50/50 DT
(1995)

•  First closed cycle processing of tritium on a fusion experiment using 50% deuterium (D)
and 50% tritium (T) (Feb 1997)

•  About 1 million curies of tritium was handled safely over a three year period during over
1,000 DT experiments.

•  TFTR engineering systems operated above the original design ratings for toroidal field
and neutral beam power.

•  The total cost of the TFTR program (design, construction, operation and
decommissioning was $1.65 B, or 22% of the the US fusion program from 1975 to
1997.
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The Next Step Burning Plasmas
• 1980 - Fusion Engineering Device (FED), SC or Cu coils, 200 MW, 200s as

part of MFE Act  to be competed after expenditure of  $1.6B

• 1984 - Tokamak Fusion Core experiment (TFCX), SC coils, 200 MW,   ss
estimated cost $1.7B - cancelled too expensive

• 1986 - Compact Ignition Tokamak (CIT), LN Cu coils - 400 MW, 5 s, $0.7B

• 1989 - CIT was in FY89 budget with PACE funding for design, but was
withdrawn by DOE (Hunter) when ignition could not be guaranteed.
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Compact Ignition Tokamak (1985-1989)
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Based on today’s understanding, CIT  would have “ignited” with
Q = 35 using a conservative H98(y,2) = 0.92 !!!!
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The Next Step Burning Plasmas
• 1980 - Fusion Engineering Device (FED), SC or Cu coils, 200 MW, 200s as

part of MFE Act  to be competed after expenditure of  $1.6B

• 1984 - Tokamak Fusion Core experiment (TFCX), SC coils, 200 MW,   ss
estimated cost $1.7B - cancelled too expensive

• 1986 - Compact Ignition Tokamak (CIT), LN Cu coils - 400 MW, 5 s, $0.7B

• 1989 - CIT was in FY89 budget with PACE funding for design, but was
withdrawn by DOE (Hunter) when ignition could not be guaranteed.

• 1990 - BPX a larger CIT with less ambitious goals and higher cost was put
forward - cancelled in Sept 1991(SEAB, Townes Panel) on to TPX

• 1992 - ITER - US joins ITER as one of four partners, has lead design center

• 1997 - US leaves ITER after completion of Engineering Design Activity

• 1998 - US initiates study of advanced CIT called FIRE
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Burning Plasmas in the 21st Century

Snowmass 2002 - assessment of ITER , FIRE and Ignitor
• ITER/FIRE - similar H-Mode and AT physics capability

• ITER design complete with >80 procurement packages ready to go to industry
• ITER total cost estimate = $5B,   FIRE total cost estimate = $1.2B
   US cost (10%)    =   $0.5B US Cost (100%)   =   $1.2B
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Why Couldnʼt US MFE Take the Next Step?

•  Logic IV became the basis for the MFE Act of 1980.
•  The US Fusion Program evolved on to Logic I - we never get there.

Fusion Power by Magnetic Fusion Program Plan   July 1976        ERDA – 76/110/1

FY 1978$
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Why Couldnʼt US MFE Take the Next Step?

•  Logic IV became the basis for the MFE Act of 1980.
•  The US Fusion Program evolved on to Logic I - we never get there.

Fusion Power by Magnetic Fusion Program Plan   July 1976        ERDA – 76/110/1

FY 1978$

Actual FY-1978$

+
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The Next Challenge -
Sustainment of Fusion Plasma Conditions

• Steady-state operation is a highly desirable characteristic for a
magnetic fusion power plant. This requires:

– Sustained magnetic configuration
• The stellarator (helical) configuration is inherently steady-state, or
• Advanced tokamak with high bootstrap current fraction and moderate

external current drive is also  a possible steady-state solution.

– Effective removal of  plasma exhaust and nuclear heat
• Power density and distribution of removed power
• Effect of self conditioned PFC on plasma behavior

• Helical/Stellarator Resurgence
– Confinement, beta approaching tokamak
– Opportunities for configuration optimization

• Long Pulse Superconducting tokamaks - T-7, T-15, Tore Supra, TRIAM,
EAST, KSTAR, SST-1, JT-60SA
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Realizing The Advanced Tokamak
• Plasma cross-section shaping to enhance plasma current, power production

– 1968 Ohkawa (Plasma Current Multipole), 1973 T-9 Finger Ring,
– 1990s Spherical (low aspect ratio) Tokamaks

• Bootstrap Current (self generated current)
– Predicted 1971 - Bickerton
– First observation 1983 in a mulitpole exp’t - Zarnstorff/Prager
– Observed in 1986 in tokamak -TFTR - Zarnstorff

• Beta limit physics “understood” for tokamak
–  β = βN (Ip/aB) where β = <p>/<B2>, 1983,  Troyon, Sykes
– NTM Stabilization by ECRH ASDEX Upgrade, DIII-D or Reversed Shear
– Resistive Wall Stabilization DIII-D ~2005

• Confinement enhancement by stabilizing ITG using Reversed Shear

• Reversed shear with a hollow current  profile provides the above:
– PEP modes on JET 1988
– ERS modes on TFTR 1994
– NCS modes on DIII-D 1994
– RS modes on JT-60U 1995 - record nTτ
– But all were transient

 Tihiro Ohkawa with toroidal multipole at GA 1966 
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Four New Superconducting Tokamaks will Address Steady-
State Advanced Tokamak Issues in Non-Burning Plasmas

EAST:  R = 1.7m, 2MA, 2006

KSTAR:  R = 1.8m, 2MA, 2008

SST-1: R =1.1m, 0.22MA,  2008

JT-60SA:  R = 3m, 5.5 MA, 2014
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Optimizing the 2-D Geometry of a Tokamak

•  Higher β-limits at lower aspect ratio recognized in mid 1960s

•  βt ≈ 40% achieved in START 1991-96 and  NSTX 2004

• What is the optimum aspect ratio for overall system performance?

• Very Low aspect ratio may allow a Cu TF coil engineering solution
in a D-T environment

MAST NSTX
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The Stellarator/Helical  (3-D) Systems

• The stellarator as first proposed by Spitzer May 1951 was a thermonuclear power
generator based on a linear cylinder with uniform magnetic field.  A toroidal stellarator
based on a Figure 8 was described later.

• PPPL Model C - converted to tokamak in 1969, and the main stellarator effort was
carried forward by IPP and Japan Univ’s/NIFS through the 70s and 80s.

Figure 8 Stellarator (Model A ~ 1954)  and Spitzer (1993)
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Sustained Hi β in Partially Optimized Stellarator W7-AS

• W7-AS was the first stellarator device based on modular non-planar magnetic field coils
• demonstrated commonality with tokamak physics like access to H-mode confinement regime



41/24

An Optimized Stellarator is Under Construction

Major radius: 5.5 m
Minor radius: 0.53 m
Plasma volume 30 m3

Induction on axis:  3T
Stored energy: 600 MJ
Machine mass: 725 t
Pulse length:   30 min
Aux Heating 20-40 MW

Wendelstein 7-X
First Plasma 2014

W-7X is based on W-7AS, and is optimized to
reduce bootstrap plasma currents, fast particle loss,
neoclassical transport, with good flux surfaces ,
MHD stability and feasible coils.
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Unfinished Business: Quasi-Axisymmetric Stellarators (NSCX)

•  Intriguing opportunities for steady-state disruption-free operation

• 3-D with need for high precision leads to hardware complexity and higher costs

• How symmetric does quasi-symmetric have to be?

• What is the future in this area? 

2 m
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• Agreed to “cooperation on fusion research” November 21, 1985  Geneva

• The IAEA provides the framework for International Collaboration

• By Dec 2005, EU,JA, RF, KO,CN, IN and US had signed ITER agreement

Gorbachev and Reagan

An International Team is Forged to Develop a New Energy Source
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• Agreed to “cooperation on fusion research” November 21, 1985  Geneva

• The IAEA provides the framework for International Collaboration

• By Dec 2005, EU,JA, RF, KO,CN, IN and US had signed ITER agreement

Gorbachev and Reagan

An International Team is Forged to Develop a New Energy Source

E. Velikhov
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ITER is Now Underway

ITER Site Under Construction

First Plasma planned for  2018

First DT operation planned for ~2022

Reactor scale
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ITER is Now Underway

ITER Site Under Construction

First Plasma planned for  2018

First DT operation planned for ~2022

Reactor scale

==> 2020

==> 2025
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Inertial Confinement Fusion, Early Days

• Radiation compression of DT to produce fusion energy
demonstrated in the early 50s in Greenhouse George Cylinder
test (and others).

• Invention of the laser in early 60s offered the possibility of a
programmable repetitive driver for micro targets. Research
continued on intense particle beam drivers in USSR and US.

• Idealized calculations in late 60s suggested 1kJ needed to
achieve breakeven using micro targets and direct drive.

• 1972- Nature article by Nuckolls et al with computer modeling of
laser driven compression   Nature Vol. 239, 1972, pp. 129

• Laser driven experiments at LLNL and elsewhere from mid 70s
to mid 80s (Nova), revealed importance of plasma instabilities
and driver uniformity,  raising required driver energy to MJ
range.
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Construction of NIF/LMJ - ICF Burning Plasmas

• Classified Centurion-Halite nuclear tests in ~1986 are reported to have
validated compression modeling

• Many aspects of US ICF declassified in Nov 1994, allowing target
designs to be discussed.

• Omega Project achieves gain of 0.01 using direct drive of a DT capsule
in 1996.

• Fast Ignitor concept (1995) offers possibility of reduced driver energies

• There has been dramatic progress in driver intensity and pellet
fabrication in the past 40 years, and many challenges remain.

• Multiple paths in drivers (Glass, KrF, Z-pinch) are being pursued.
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• Glass laser energy has increased 106

• Fusion energy will need:
increased efficiency
increased repetition rate

NIF Enabled by Rapid Advance in Laser Technology
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FI Expt’s  -
Omega, FIREX,
HIPER

Target Designs with Varying Degrees of Risk
Provide Adequate Gain for all Driver Concepts

Tabak Snowmass
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Hot Spot Ignition
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NIF Dedication May 29, 2009

Ignition Campaign - starting 2010
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Some Overall Highlights

• A strong scientific basis has been established for fusion.

• Diagnostics and Plasma Technology  (Aux heating, CD, pellet inj) enabled progress.

• Computer Simulations are becoming more realistic and integral to analysis and prediction.

• Several promising paths to fusion, each working on optimization and sustainment.

• Temperatures needed for fusion achieved  - in many facilities.

• Confinement needed for fusion is being approached - one step away.

• Complex fusion systems have been operated at large scale.

• Fusion systems using fusion fuel (DT) operated safely.

• Fusion could move much faster if required resources were applied.

• Now on the threshold of energy producing plasmas in both magnetic and inertial fusion.
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ITER NIF

Facilities to Produce Fusion Energy are under
Construction

First D-T  ~2022
Fusion Gain, Q   10
Fusion Energy/pulse 200,000 MJ

First D-T  ~2010
Fusion Gain, Q 10 - 20
Fusion Energy/pulse 40 MJ
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NIF and ITER will Extend Progress in Fusion Energy
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Is Fusion Prepared for a Major Next Step if
Opportunity Knocks Again?

140

J. Willis, MacFusion
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LIFE

Fusion in 1 Decade
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First D-T Power ~2025+15
Fusion Gain, Q     20 - 45
Fusion Power 2,500 MW

First D-T      ~2020
Fusion Gain, Q         25
Fusion Power     400 MW
Fission + Fusion Power  2,500 MW

DEMO

Fusion in 3 Decades

5 m

LIFE

Fusion in 1 Decade

5 m
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Concluding Thoughts
•  By any measure magnetic fusion has made enormous progress

during the past 50 years, and has established a solid technical basis
for taking the next step(s) to burning plasmas.

•  Unfortunately, magnetic fusion has missed some critical opportunities
that have delayed the program eg. 20 years ago with CIT.

•  US MFE has drifted into a “treading water” phase, and is adding more
small steps instead of taking a bold step forward.

•  The MFE community needs a compelling vision to make a major step
forward  within a decade and establish the credibility of magnetic
fusion. The clock is ticking and so is NIF.



57

Even Uncle Sam is getting impatient!



57

I want you to get on with fusion,

Even Uncle Sam is getting impatient!



57

I want you to get on with fusion,

Even Uncle Sam is getting impatient!

and get it done in my lifetime. 
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