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Outline

• Introduction to Burning Plasmas
• Plasma Materials Interaction Phenomena
• Materials Issues
• Summary
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Benefits of a Burning Plasma Experiment

• Study the physics of self heated plasmas
– Alpha particle heating
– Alpha energy driven MHD activity
– Self organized current distribution

• Demonstrate ignition and burn in a magnetic 
confinement configuration

• Establish the practical components needed for 
energy production
– Fueling and particle control
– Steady-state heat removal
– Tritium breeding
– Resistance to neutron damage
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The FIRE Burning Plasma Device

• A compact high field 
and density tokamak 
machine

• Major radius 2 m
• Minor radius 0.5 m
• Elongation 1.8
• Magnetic field 8 Tesla
• Density 1021/m3

• 200 MW fusion power
• 18 s pulse length
• 3000 full power pulses
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The International Thermonuclear 
Experimental Reactor (ITER)

• Joint design by US, 
Europe, Japan, and Russia 
(US dropped out in 1998)

• Superconducting magnets
• 500-1000 MW fusion power
• Fusion gain of 10
• Maximum pulse length 

1000 s
• Actively cooled internal 

components
• Designed for full remote 

maintenance
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Plasma Materials 
Interaction Phenomena
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Fusion Plasma Materials Interactions

• The core plasma must be 
kept clean of impurities 
and He ash

• The plasma facing 
component surface sees 
high density and 
temperature plasma

• Key issues are hydrogen 
trapping, erosion, and 
thermal fatigue

• Spans science specialties 
from ionized gases to 
materials science
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Science Needed for Fusion Plasma
Materials Interactions

• Atomic and molecular physics for ionization, 
dissociation, and photon radiation of plasma and 
impurity species

• Surface physics for sputtering, chemical erosion, 
hydrogen trapping and release, surface 
segregation

• Materials science for nuclear radiation damage, 
thermal fatigue, stress corrosion, creep, bonding, 
and hydrogen trapping

• Engineering science for stress management, heat 
transfer, and component design
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Understanding of Hydrocarbon Molecule 
Transport in the Plasma Edge
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Comparison of Erosion Modeling and 
Experiment

•Erosion data from 
DIII-D divertor 
probe under the 
strike point

•Calculation from the 
WBC code including 
sputtering, 
ionization, transport 
and redeposition
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VFTRIM-3D (Vectorized Fractal TRIM)

• A binary-collision 
approximation with atomic-
scale surface roughness 
using a fractal algorithm.

• Uses a binary collision based 
on the Kr-C interaction 
potential and classical 
scattering kinematics. 

• Electronic inelastic energy 
loss model uses an 
equipartition between the 
local Oen-Robinson model 
and non-local Lindhard-Sharff 
model.
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Carbon

•Hydrogen insoluble in carbon.
•Implanted H quickly forms a 
saturated layer in the implant 
zone.  H atoms diffuse rapidly 
along the porosity (low T).

•At higher temperatures, the 
atoms enter into the grains 
where many are trapped.

• Sputtered carbon can join with D/T to form a stable 
film on surfaces (codeposition)

• Codeposition traps as much as 40% of all D/T
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Beryllium

• Hydrogen isotopes are 
insoluble in beryllium.

• Implanted H comes out 
of solution to form a 
“worm-like” structure 
several microns deep.

• All H subsequently 
implanted is released.

Russian Academy of Sciences

• T bred in the beryllium due to n reactions is trapped.
• This T stays in the Be until removal from the reactor.
• A T inventory in the hundreds of grams is possible.
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Tungsten

• Rapid diffusion and release 
of tritium prevent significant 
buildup of tritium in 
tungsten.

• The low solubility of the 
hydrogen isotope in the 
tungsten can result in bubble 
and blister formation for 
intense plasma exposure. 

• Blister formation could result 
in the deposition of tungsten 
into the plasma (flaking and 
melting).

Blisters on W after 
exposure on the Tritium 
Plasma Experiment
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Measurement of Tritium

Tritium in JET Graphite Limiter
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• Count betas using a PIN diode.

- Beta energy is low (<18 keV), short 
range, only detects near-surface T.

- Sensitive ~ 108 T/cm2 or 0.1 Bq/cm2.

• Elastic Recoil Detection using MeV ions 
or neutrons.

- Measures H,D and T

- Greater range but less sensitive than 
beta counting.
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Liquid Surface Composition

Experiment

Liquid 
Lithium

Oxygen 
segregates 
to the 
surface 
upon 
melting
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Variation of Sn/Li Liquid Surface 
Composition

• Sn80Li20 liquid

• Composition 
measured by small 
angle scattering

• Red is Sn, blue is Li 
and green is O

• Segregation of Li on 
the surface is clearly 
seen above the 
melting point
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Plasma Interaction With a Liquid Li Surface

• PISCES plasma device
• Lithium light from the 

interaction of the incident 
plasma with the 
evaporated or sputtered Li 
from the liquid surface

• Studies of erosion rates, 
temperature limits and 
hydrogen isotope 
retention in Li have been 
conducted.
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Materials Issues
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Magnetic Fusion Energy Heat Fluxes
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Stress Minimization Analysis
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Progress in PFC Capability

Progress:

• Reduction of 
stress using 
rods on the 
surface

• Low 
temperature 
joining

• Improved heat 
transfer 
enhancement
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Analysis of Disruption Heating

• Heights code 
package

• Includes 
evaporation 
and plasma 
shielding 
effects

• Experimentally 
verified
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Liquid Surfaces for Fusion Devices

• Eliminates the erosion issue for component 
lifetime

• No thermal stress issues
• Some liquids offer particle removal capability
• No neutron damage issues
• Complicated MHD effects (3D magnetic fields that 

are time varying, fast moving conducting liquids, 
etc.)

• Temperature limits may be low (heat flux limits)
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Temperature Limits
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Allowed Duration for High T Limit
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Particle Pumping by Liquid Li

• The recombination rate for H on Li is very small 
(10-27 to 10-31 cm4/s)

• Several experiments have confirmed nearly 100% 
retention

• An area of flowing lithium has a large capacity for 
pumping H isotopes

• 1 m2 Li flowing at 10 m/s can pump up to 1023

particles/s
• This particle removal capability is attracting the 

interest of even existing fusion machines.
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Summary

• The plasma materials interaction issues for a 
burning plasma device are well defined
– Tritium retention (hydrogen in materials)
– Erosion of plasma facing materials (sputtering and 

chemical)
– Transport of eroded material (atomic and molecular 

physics)
– Cyclic thermal stress (materials and engineering 

science)
• A substantial experimental database exists to 

calibrate physics models of the important 
phenomena
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Summary

• Physics and engineering based models of the 
important phenomena are being developed and 
compared to the experimental data

• The extrapolation to a burning plasma device is 
less of a step than was made when designing the 
last generation of fusion devices.

• Three potential solutions for PFCs exist and 
research is being conducted to verify those 
solutions.
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Potential Solutions for PFCs

• All metal water cooled solution
– W rod surface divertor targets and Be first wall
– Water cooled copper substrates
– Nearly completely demonstrated on existing 

devices (lowest risk)
• Helium gas cooled all refractory metal solution

– Relies on impurity seeding in the divertor to reduce 
heat loads (may have no erosion)

– Uses refractory metal improvement from material 
program

– High temperature gas turbine cycle
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Potential Solutions for PFCs

• Liquid metal plasma facing components
– Least developed and greatest risk of 

insurmountable problems
– Requires solution of very difficult MHD problems
– No erosion issues
– Some materials can pump particles
– No thermal stress issues
– Robust to transients
– Long term, high risk, high payoff research
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