FIRE Response to NSO-PAC3

and

Issues and Plans for Snowmass

Dale M. Meade

for the FIRE Team

Presented at NSO-PAC 4 Meeting Lawrence Livermore National Laboratory

November 29, 2001

http://fire.pppl.gov

Activities since last PAC and Progress on NSO PAC 3 Action Plan Meade

FIRE Physics /AT Progress Kessel

FIRE Activities in preparation for Snowmass Meade

(Ulrickson, Jardin, Nelson, Heitzenroeder on call)

FIRE/Burning Plasma Activities Since Last PAC

- HR 4 Passed by House, calls for increase in base budget and directs DOE to submit a plan for US construction of a burning plasma experiment. DOE may also submit a plan for participation in an international BP.
- FESAC Burning Plasma Panel Report endorsed by FESAC on Aug 2, final version released.
- FIRE Participated in ITPA Confinement Data Base and Modeling (Sep 10-13) FPA Meeting (Sep 24) APS-DPP (five posters) ITPA Diagnostic Meeting St Petersburg, Nov 14 - 16)
- Visits and discussions were held at SRS(2), Lehigh, JAERI-Naka, Univ. of Wisc., ORNL, Univ. of Wash (2).
- Follow up on

FIRE External Engineering Review Recommendations and Chits NSO PAC Recommendations Preparation for Snowmass

Is an Opportunity Emerging for Fusion?

Secretary of Energy – Abraham - DOE Mission and Priorities – Oct. 24, 2001 (to DOE Lab Directors and DOE)

"I would add to this list two priorities that deserve special mention. The first involves the unique technological contribution we can make to our energy and national security by finding new sources of energy. Whether it is fusion or a hydrogen economy, or ideas that we have not yet explored, I believe we need to leapfrog the status quo and prepare for a future that, under any scenario, requires a revolution in how we find, produce and deliver energy."

"I intend, therefore, that this Department take a leadership role in exploring how we can identify and use potentially abundant new sources of energy with dramatic environmental benefits."

By end of January conduct a strategic missions review to: ...identify new sources of energy.....

Federal Reserve Chairman Greenspan - On Energy Supply – Nov. 13, 2001 (Rice University)

"In the more distant future remains the potential of fusion power. A significant breakthrough in this area has been sought for years but seems discouragingly beyond reach. But success could provide a major contribution to our nation's future power needs. The input costs of fusion power would be minor, and it produces negligible nuclear waste or pollutants."

What should we do to be ready?

Recommendations on Chapter 3 – Plasma Confinement Configurations

The confinement configuration program should be specified in terms of scientific questions.

A roadmap for the fusion program should be drawn up that shows the path to answering the major scientific questions, as well as the progress so far in the development of fusion concepts.

The development of a roadmap for a fusion-based energy source is essential to aid in the long-term planning of the fusion program. The roadmap should show the important scientific questions, the evolution of confinement configurations, the relation between these two features, and their relation to the fusion energy goal.

Solid support should be developed within the broad scientific community for U.S. investment in a fusion burning experiment.

There should be continuing broad assessments of the outlook for fusion energy and periodic external reviews of fusion energy science.

Critical Issues to be Addressed in the Next Stage of Fusion Research

Burning Plasma Physics

- strong nonlinear coupling inherent in a fusion dominated plasma
- access, explore and understand fusion dominated plasmas

• Advanced Toroidal Physics

- develop and test physics needed for an attractive MFE reactor
- couple with burning plasma physics
- Boundary Physics and Plasma Technology (coupled with above)
 - high particle and heat flux
 - couple core and divertor
 - fusion plasma tritium inventory and helium pumping

• Neutron Resistant Materials (separate facility)

- high fluence testing using point" neutron source

- Superconducting Coil Technology does not have to be coupled to physics experiments - only if needed for physics objectives
- Nuclear Component Testing should wait for the correct reactor materials

The Modular Strategy for MFE

Fusion Science Objectives for a Major Next Step Burning Plasma Experiment

Explore and understand the strong non-linear coupling that is fundamental to fusion-dominated plasma behavior (self-organization)

- Energy and particle transport (extend confinement predictability)
- Macroscopic stability (-limit, wall stabilization, NTMs)
- Wave-particle interactions (fast alpha particle driven effects)
- Plasma boundary (density limit, power and particle flow)
- Test/Develop techniques to control and optimize fusion-dominated plasmas.
- Sustain fusion-dominated plasmas high-power-density exhaust of plasma particles and energy, alpha ash exhaust, study effects of profile evolution due to alpha heating on macro stability, transport barriers and energetic particle modes.
- Explore and understand various advanced operating modes and configurations in fusion-dominated plasmas to provide generic knowledge for fusion and non-fusion plasma science, and to provide a foundation for attractive fusion applications.

Need to develop an integrated burning plasma simulation with good visualization output - useful for design phase, experimental phase and to provide the transfer to other configurations and "DEMO".

Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q	≥5,	~ 10 as target,	ignition not precluded
$f_{\alpha} = P_{\alpha}/P_{heat}$	≥ 50%	‰, ~ 66% as targe	t, up to 83% at Q = 25
TAE/EPM	stable a	at nominal point, a	ble to access unstable

Advanced Toroidal Physics

$$\begin{split} f_{bs} &= I_{bs}/I_p \ (\sim 25 \ \% \ in \ H-Mode) \geq 50\% \ as \ target \ AT \quad up \ to \ 75\% \ allowed \\ \beta_N & \sim 2.5, \ no \ wall & \sim 3.6, \ n \ = 1 \ wall \ stabilized \end{split}$$

Quasi-stationary

Divertor pumping and heat removal	several $\tau_{divertor}, \tau_{first wall}$
Plasma current profile evolution	1 to 3 τ_{skin}
Alpha ash accumulation/pumping	$>$ several τ_{He}
Pressure profile evolution and burn control	> 10 τ _E

Fusion Ignition Research Experiment

(FIRE)

http://fire.pppl.gov

Design Features

- R = 2.14 m, a = 0.595 m
- B = 10 T
- W_{mag}= 5.2 GJ
- I_p = 7.7 MA
- $P_{aux} \le 20 \text{ MW}$
- $Q \approx 10$, $P_{\text{fusion}} \sim 150 \text{ MW}$
- Burn Time ≈ 20 s
- Tokamak Cost ≈ \$375M (FY99)
- Total Project Cost ≈ \$1.2B at Green Field site.

Mission:

Attain, explore, understand and optimize magnetically confined fusion-dominated plasmas.

Comparison Operating Ranges of ITER-EDA, ITER-FEAT and FIRE with JET H-Mode Data

- Extension of JET parameter domain leading to simultaneous realization of $H_{98(y,2)} = 1$, $n/n_{GW} > 0.9$ and $\beta_N \ge 1.8$ using different approaches and
- In addition Plasma purity as required for ITER: Zeff ~ 1.5
- For quasi-stationary phases of several seconds
- A more extensive study of the operating range with the latest public data base DB3v10 will be done for
 Snowmass. Also Cordey EPS paper showing H(n/nGW, δ, n(0)/<n>, etc

Optimization of a Burning Plasma Experiment

• Consider an inductively driven tokamak with copper alloy TF and PF coils precooled to LN temperature that warm up adiabatically during the pulse.

• Seek minimum R while varying A and space allocation for TF/PF coils for a specified plasma performance - Q and pulse length with physics and eng. limits.

What is the optimum for advanced steady-state modes?

Comparison of ITER98(y,2) and Electrostatic GyroBohm Scaling

Jardin, Kessel

Parameters for H-Modes in Potential Next Step D-T Plasmas

ITER-FEAT (15 MA): Q = 10, H = 0.95, FIRE*(7.7 MA): Q = 10, H = 1.03, JET-U (6 MA): Q = 0.64, H = 1.1

FIRE 10T, 7.7 MA, $H_{EGB} = 1.0$, $\alpha_n = 0.2$

• Burn Time $\approx 20 \text{ s} \approx 21 \text{ } \tau_E \approx 4 \text{ } \tau_{He} \approx 2 \text{ } \tau_{skin}$

Q = Pfusion/(Paux + Poh)

Helium Ash Removal Techniques Required for a Reactor can be Studied on FIRE

Fusion power can not be sustained without helium ash punping.

TSC/Kessel/21-q.ps Early case - 1999 switch to C. Kessel , FIRE Physics /AT Progress

FIRE Physics Issues and Needs

- Most are the same as for ITER-FEAT!
- Differences arise due to:
 - Double null divertor higher δ , shorter path to divertor, neutral stability point no asymmetric alpha ripple loss region, ($\delta B/B = 0.3\%$)
 - Lower density relative to n_{GW}, higher density relative to NBI, RF, neutrals
 - All metal PFCs, esp. W divertor targets, No neutral beam heating
- Specific Interests (requests)
 - Core Confinement (H-Mode and close relatives)
 - Understand requirements for enhanced H-modes at $n/n_{GW} \approx 0.6 0.7$
 - Compare $SN \Rightarrow DN$ or nearly DN; maybe more than triangularity
 - Extend global studies/analysis $H = H(\delta, n/n_{GW}, n(0)/\langle n \rangle)$
 - H-mode power threshold for DN, hysteresis, $H = f(P P_{th})$
 - Pedestal height/width as $SN \Rightarrow DN$; elms as $SN \Rightarrow DN$
 - Rotation as $SN \Rightarrow DN$
 - Expand H-Mode data base for ICRF only plasmas
 - Demonstration discharges and similarity studies
 - Density Profile Peaking expectations/requirements?

FIRE Physics Issues and Needs (p.2)

- Internal Transport Barriers (AT Modes)
 - Access to ATs with: RF heated, $q_{95} \sim 3.5$ 4, $T_i/T_e \approx 1$,
 - density peaking needed for efficient LHCD
 - n = 1stabilization by feedback
- SOL and Divertor Impurities
 - Justification for using $n_z \Downarrow as n_e \uparrow?$
 - ASDEX Upgrade and C-Mod Hi Z impurity in core and tritium"retention
 - Consistency of partially detached divertor with good τ_{E} and He removal
 - Models and improved designs for extending lifetime (Elms/disruptions)
- Plasma Termination and Halo Currents
 - Does DN neutral zone reduce force or frequency of disruptions?
 - Develop early warning, mitigation and recovery techniques
- Finite- β effects
 - stabilization of NTMs using LHCD (Δ ' modification)
 - elms for enhanced confinement modes
 - TAE, EPM studies in DD with beams and RF
- Diagnostic development -

Contributors to the FIRE Engineering Design Study

FIRE is a design study for a major Next Step Option in magnetic fusion and is carried out through the Virtual Laboratory for Technology. FIRE has benefited from the prior design and R&D activities on BPX, TPX and ITER.

Advanced Energy Systems **Argonne National Laboratory DAD** Associates **General Atomics Technology** Georgia Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory Massachusetts Institute of Technology **Oak Ridge National Laboratory Princeton Plasma Physics Laboratory** Sandia National Laboratory Stone and Webster The Boeing Company **University of Illinois** University of Wisconsin

June 7, 2001

To:	Charles Baker
From	Charles Bushnell Jim Irby Saurin Majumdar Peter Mioduszewski Ron Parker Aldo Pizzuto Fred Puhn
Subject:	External Review of FIRE

The above Committee has concluded 3 days of listening to presentations and detail discussions with the Engineering Team of FIRE. While many design details, concerns, comments and recommendations are attached to this letter, we feel *very strongly* that the following four points should be made up front for your consideration:

- 1. The Pre-Conceptual design team has done an outstanding job of looking across the Physics requirements, and investigating a through range of devices that could be considered. The team has created concepts for new machines that can explore most of the critical physics issues in burning plasmas in a facility of modest cost.
- 2. These Pre-Conceptual investigations have been carried out in amazing detail, considering our observations that the team is less than the required "critical mass" for the proper confrontation of this effort. This has limited their ability to fully address a number of critical engineering problems in detail.
- 3. It is <u>CRITICAL</u> that immediate resources be provided to raise the team to the required "critical mass" so that it can properly conclude the Pre-Conceptual Design phase in an expeditious and efficient manner.
- 4. It is also <u>*CRITICAL*</u> that immediate resources be provided to expeditiously engage in the R&D necessary to support the above design effort.
- Attachments:1.0 Magnet System Summary with summary [associated "chits" at PPPL]2.0 Vacuum system, PFCs, IRH, Fueling and Pumping Summary with
summary [associated "chits" at PPPL]

FIRE Baseline for Snowmass Assessment

Direct and Guided Inside Pellet Injection

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

TF coils are being Designed with Added Margin.

- FIRE* Baseline R = 2.14 m, a = 0.595 m B = 10 T, Ip = 7.7 MA, 20 s flat top, Pfus = 150 MW
- Wedged TF/compression ring BeCu (C17510) inner leg
- The peak conductor VM Stress of 529 MPa for 10 T (7.7 MA) is within the static allowable stress of 724 MPa

(Allowable/Calculated = 1.3)

TF Coil Von Mises Stress Contours at 12 T

TF Conductor Material for FIRE is "Essentially" Available

- BeCu alloy C 17510 68% IACS is now a commercial product for Brush Wellman.
- A relatively small R&D program is needed to assure that the plates will be available in the properties and sizes required.
- Recent discussions with Brush Wellman are very encouraging. May be able to provide slightly higher conductivity 72% IACS

Basic Parameters and Features of FIRE

R, major radius	2.14 m
a, minor radius	0.595 m
кх, к95	2.0, 1.77
δx, δ95	0.7, 0.55(AT) - 0.4(OH)
q95, safety factor at 95% flux surface	>3
Bt, toroidal magnetic field	10 T with 16 coils, 0.3% ripple @ Outer MP
Toroidal magnet energy	5.8 GJ
Ip, plasma current	7.7 MA
Magnetic field flat top, burn time	28 s at 10 T in dd, 20s @ Pdt ~ 150 MW)
Pulse repetition time	~3hr @ full field and full pulse length
ICRF heating power, maximum	20 MW, 100MHz for $2\Omega T$, 4 mid-plane ports
Neutral beam heating	Upgrade for edge rotation, CD - 120 keV PNBI?
Lower Hybrid Current Drive	Upgrade for AT-CD phase, ~20 MW, 5.6 GHz
Plasma fueling	Pellet injection (≥ 2.5 km/s vertical launch inside
	mag axis, guided slower speed pellets)
First wall materials	Be tiles, no carbon
First wall cooling	Conduction cooled to water cooled Cu plates
Divertor configuration	Double null, fixed X point, detached mode
Divertor plate	W rods on Cu backing plate (ITER R&D)
Divertor plate cooling	Inner plate-conduction, outer plate/baffle- water
Fusion Power/ Fusion Power Density	150 - 200 MW, ~6 -8 MW m-3 in plasma
Neutron wall loading	~ 2.3 MW m-2 Limits pulse length in many AT modes
Lifetime Fusion Production	5 TJ (BPX had 6.5 TJ)
Total pulses at full field/power	3,000 (same as BPX), 30,000 at 2/3 Bt and Ip
Tritium site inventory	Goal < 30 g, Category 3, Low Hazard Nuclear Facility

Diagnostics proposed for FIRE (1)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Magnetic Measurements			
Plasma current		Rogowski Coils	All magnetics inside vacuum vessel
Plasma shape and position		Flux/voltage loops	Very high radiation environment and high
Shape, position & MHD		Saddle coils (inc. locked-mode)	temperature apply for all magnetics
		Discrete Br, Bz coils	Very little space behind first wall/divertor
Plasma pressure		Diamagnetic loops	
Disruption-induced currents		Halo current sensors	
Current Density Profiles			
Current density for most of profile		Motional Stark effect	Requires neutral beam. Two views may give Er
		FIR polarimetry	Most sightlines radial; poor coverage in radial plane
Current density in edge		Li-beam polarimetry	Requires Lithium beam; integration issue
Electron Density			
Core electron density profile	\checkmark	Thomson scattering	Tangential laser, imaging view required by small plasma size
		FIR multichannel interferometer/polarimeter	Most sightlines radial; poor coverage in radial plane; tangential polarimeter
X-point/divertor density profiles		Thomson scattering	Design integration into side ports with divertor/first wall
Edge, transp. boundary profile		mm-wave reflectometer	
Edge density profile		Fast-moving probe	
Divertor density variation along		Multichannel interferometer	Complex integration with divertor/baffle;
separatrix			Dynamic range may make this impossible
Divertor plate density		Fixed probes	RIED may affect probe insulation

K.M.Young 14 Nov. 01

1st ITPA Diagnostics, St. Petersburg, Russia

Diagnostics proposed for FIRE (2)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Electron Temperature			
Core electron temperature profil	e √	Thomson scattering	Tangential laser, imaging view required by small plasma size
		ECE heterodyne radiometer	
		ECE Michelson interferometer	Provides best calibration for ECE diagnostice
X-point/divertor temperature profiles		Thomson scattering	Design integration into side portswith divertor/first wall
Edge temperature profile		Fast-moving probe	
Divertor plate electron temp.		Fixed probes	RIED may affect probe insulation
Ion Temperature			
Core ion temperature profile		Charge exchange spectroscopy	Requires neutral beam
		Imaging x-ray crystal spect.	Full radial coverage would require close-in curved crystal; detector noise issue?
		Neutron camera spectroscopy	Full coverage difficult; spatial res. Poor
Divertor ion temperature		UV spectroscopy	
_			
Plasma Rotation			
Core rotation profile		Charge exchange spectroscopy	Requires neutral beam: balanced views for $v\theta$ needed
		Imaging x-ray crystal spect.	Full radial coverage would require close-in curved crystal; detector noise issue?
Relative Isotope Concentratio	n		
Density of D and T concentrations in core		Charge-exchange spectroscopy	Requires neutral beam
		Neutron spectroscopy	Can DD neutrons be discriminated from DT and TT neutrons?

1st ITPA Diagnostics, St. Petersburg, Russia

Diagnostics proposed for FIRE (3)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Radiation			
Zeff, visible bremsstrahlung		Visible bremsstrahlung array	
Core hydrogen isotopes, low-Z impurities		Visible filterscopes	
Divertor isotopes and low-Z impurities		Divertor filterscopes	
Core low-Z impurities		Visible survey spectrometer	
		UV survey spectrometer	
Divertor low-Z impurities and detachment		Multichord visible spectrometer	Very little space to develop sightlines
High-Z impurities		X-ray pulse height analysis	Single sightline, detector noise
Divertor impurities		UV spectrometer	Access issue into divertors
Total radiation profile		Bolometer arrays	Mounting and radiation-hardness of bolometers are challenges
Total light image		Visible TV imaging	
MHD and Fluctuations			
Low-frequency MHD		Discrete Br, Bz coils	Very little space behind first wall/divertor
		Saddle coil for locked-mode	
		Neutron fluctuation dets.	
High-frequency MHD, TAE, etc	. √	High-frequency Mirnov coils	HF-coils behind tile-gaps, little space
Core density fluctuations		Mm-wave reflectometers	
		Beam emission spectroscopy	Requires neutral beam
Core electron temp. fluctuations		ECE grating polychromators	
Neutron Measurements			
Calibrated neutron flux		Epithermal neutron detectors	Calibration difficult with significant shielding
Neutron energy spectra		Multichannel neutron camera	Difficult to get wide spatial coverage

K.M.Young 14 Nov. 01

1st ITPA Diagnostics, St. Petersburg, Russia

Diagnostics proposed for FIRE (4)

Physics Parameter	Control	Diagnostic Set	Issues and Comments
Alpha-particle Measurements			
Escaping alpha-particles/fast-ions		Faraday cups/scintillators at first wall	Much development needed to handle heat loads and signal transmission
		IR TV imaging	Only gives information about total loss location
Confined thermalizing alphas/spatial distribution		α-CHERS	Requires neutral beam, very high throughput optics
Confined alpha-particles' energy distribution		Collective scattering	Need development to optimize wavelength/ spatial resolution; assume mm-wave
Spatial redistribution of alphas		Li-Pellet charge exchange	Needs high-energy repetitive impurity pellet; very difficult access
Volume-average alpha-particle energy spectrum		Knock-on bubble-chamber neutron detectors	Development of detectors required
		Neutron spectrometer	Evaluates knock-on tail above 14 MeV
Dunaway alastrong			
Runaway electrons	1	TT 1 1	T '1 1 '1 '1
Start-up runaways	N	Hard x-ray detectors	necessary sightlines is issue
Disruption potential runaways		Synchrotron rad. detection	Far-forward light cone must be detected
Divortor Pumping Porformance	•••		
Divertor 1 uniping 1 errormane			Concern about DIED offecting energian
Pressure in divertor gas-box		ASDEX-type pressure gauges	Concern about KIED affecting operation
Helium removed to divertor		Penning spectroscopy	

Diagnostics proposed for FIRE (5)

Physics Parameter	Contro	Diagnostic Set	Issues and Comments
Machine Operation Support			
Vacuum base pressure		Torus ion gauges	On main pumping duct
Vacuum quality		Residual gas analyzer	On main pumping duct
Vacuum vessel illumination		Insertable lamps	To enable initial level of internal inspection
Surface Temperature			
First-wall/RF antenna temp.		IR TV imaging	
Divertor plate temperatures and detachment		IR TV imaging	
		Thermocouples	
Neutral particle sources for diagnostics			
Neutral particle source for core spectroscopy	indirect	Diagnostic neutral beam	Pulsed high power beam required for penetration at ~ 150 keV/amu
Lithium source for polarimetry		High current lithium beam	In development for DIII-D (JET?)
Lithium pellet target for confined alpha spatial dist.		High velocity lithium pellet injector	> 5 km/s, ~10 Hz development needed

Edge Physics and PFC Technology: Critical Issue

Plasma Power and particle Handling under relevant conditions Normal Operation / Off Normal events

Tritium Inventory Control must maintain low T inventory in the vessel \Rightarrow all metal PFCs

Efficient particle Fueling pellet injection needed for deep and tritium efficient fueling

Helium Ash Removal need close coupled He pumping

Non-linear Coupling with Core plasma Performance nearly every advancement in confinement can be traced to the edge Edge Pedestal models first introduced in ~ 1992 first step in understanding Core plasma (low n_{edge}) and divertor (high n_{edge}) requirements conflict

Solutions to these issues would be a major output from a next step experiment.

FIRE is being Designed to Test the Physics and In-Vessel Technologies for ARIES-RS

* Note: FIRE outer divertor plate is in steady-state

FIRE's Divertor can Handle Attached (<25 MW/m2) and Detached (5 MW/m2) Operation

Reference Design is semi-detached operation with <15 MW / m2.

Divertor Module Components for FIRE

Sandia

Finger Plate for Outer Divertor Module

Two W Brush Armor Configurations Tested at 25 MW/m²

Carbon targets used in most experiments today are not compatible with tritiun inventory requirements of fusion reactors.

Combined stresses, 20 s pulse

• Nuclear heating, gravity, coolant pressure, vacuum

FIRE In-Vessel Remote Handling System

In-vessel transporter

- Articulated boom deployed from sealed cask
- Complete in-vessel coverage from 4 midplane ports
- Fitted with different end-effector depending on component to be handled
- First wall module end-effector shown

Divertor end-effector

- High capacity (module wt. ~ 800 kg)
- Four positioning degrees of freedom
- Positioning accuracy of millimeters required

Engineering Peer Review June 5-7, 2001

What are the Costs of Next Step Burning Plasma Experiments?

Illustrative Schedule for U.S. Burning Plasma Experiment

Timetable for "Burn to Learn" Phase of Fusion

- Even with ITER, the MFE program will be unable to address the alpha-dominated burning plasma issues for \geq 15 years.
- Compact High-Field Tokamak Burning Plasma Experiment(s) would be a natural extension of the ongoing "advanced" tokamak program and could begin alphadominated experiments by ~ 10 years.
- More than one high gain burning plasma facility is needed in the world program.
 - The Snowmass 2002 Summer Study will provide a forum to assessing approaches. The NRC Review in 2002 will assess contributions to broader science issues..

- A Window of Opportunity may be opening for U.S. Energy R&D. We should be ready. The Modular or Multi-Machine Strategy has advantages for addressing the science and technology issues of fusion.
- A compact high field tokamak, like FIRE, has the potential:
 - address the important burning plasma issues,
 - most of the advanced tokamak issues and,
 - begin to study the strong non-linear coupling between BP and AT in a tokamak with the goal of also providing generic BP science and possibly BP infrastructure for non-tokamak BP experiments.
- Some areas that need additional work to realize this potential include:
 - Apply recent enhanced confinement and advanced modes to FIRE
 - Understand conditions for enhanced confinement regimes
 - Compare DN relative to SN confinement, stability, divertor, etc
 - Complete disruption analysis, develop better disruption control/mitigation.
 - Respond to FIRE Engineering Review and NSO PAC on specific physics R&D and engineering design and R&D issues.

http://fire.pppl.gov