Engineering Challenges in Designing an Attractive Compact Stellarator Power Plant

A.R. Raffray¹, L. El-Guebaly², T. Ihli³, S. Malang⁴, F. Najmabadi¹, X. Wang¹ and the ARIES-CS Team

¹Center for Energy Research, University of California, San Diego, CA, USA ²University of Wisconsin, Fusion Technology Institute, Madison, WI, USA ³Forschungszentrum Karlsruhe, IKET, Karlsruhe, Germany ⁴Consultant, Germany

Presented at the 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006

1

Outline

- **ARIES-CS program and goals**
- Engineering design and challenges
 - Blanket
 - Maintenance
 - Coil
 - Divertor
 - Alpha Loss
- Summary

2

ARIES Program

- National multi-institution program led by UCSD
 - Perform advanced integrated design studies of long-term fusion energy concepts to identify key R&D directions and to provide visions for the fusion program
 - Web site: http://aries.ucsd.edu/ARIES/

- Currently completing the ARIES-CS study of a Compact Stellarator option as a power plant to help:
 - Advance physics and technology base of CS concept and address
 - key issues in the context of power plant studies

Identify optimum CS configuration for power plant

September 11-15, 2006/ARR

The ARIES Team is Completing the Last Phase of the ARIES-CS Study

<u>Phase I: Development of Plasma/coil</u> <u>Configuration Optimization Tool</u>

- 1. Develop physics requirements and modules (power balance, stability, α confinement, divertor, *etc.*)
- 2. Develop engineering requirements and constraints through scoping studies.
- 3. Explore attractive coil topologies.

Phase III: Detailed system design and optimization

<u>Phase II: Exploration of</u> <u>**Configuration Design Space**</u>

- 1. Physics: β, aspect ratio, number of periods, rotational transform, shear, *etc*.
- 2. Engineering: configuration optimization through more detailed studies of selected concepts
- 3. Trade-off studies (systems code)
- 4. Choose one configuration for detailed design.

We Considered Different Configurations Including NCSX-Like 3-Field Period and MHH2-Field Period Configurations

NCSX-Like 3-Field Period

Parameters for NCSX-Like 3-Field Period from System Optimization Run

Min. coil-plasma distance (m)	1.3
Major radius (m)	7.75
Minor radius (m)	1.7
Aspect ratio	4.5
β(%)	5.0
Number of coils	18
$\mathbf{B}_{\mathbf{o}}(\mathbf{T})$	5.7
$\mathbf{B}_{\max}(\mathbf{T})$	15.1
Fusion power (GW)	2.4
Avg./max. wall load (MW/m ²)	2.6/5.3
Alpha loss (%)	5
TBR	1.12

MHH2 2-Field Period

Resulting Power Plants Have Similar Size as Advanced Tokamak Designs

- Trade-off between good stellarator properties (steady-state, no disruption, no feedback stabilization) and complexity of components.
- Complex interaction of physics/engineering constraints.

Blanket Concepts

7

Selection of Blanket Concepts for Detailed Study Based on Phase I Scoping Study

- 1. Dual Coolant concept with a self-cooled Pb-17Li zone and Hecooled RAFS structure.
 - He cooling needed for ARIES-CS divertor
 - Use of He coolant in blanket facilitates pre-heating of blankets, serves as guard heating, and provides independent and redundant afterheat removal.
 - Generally good combination of design simplicity and performance.
 - Build on previous effort, further evolve and optimize for ARIES-CS configuration
 - Originally developed for ARIES-ST
 - Further developed by EU (FZK)
 - Now also considered for US ITER test blanket module

2. Self-cooled Pb-17Li blanket with SiC_f/SiC composite as structural material.

• Desire to maintain a higher pay-off, higher risk option as alternate to assess $\frac{1}{2}$ the potential of a CS with an advanced blanket

Dual Coolant Blanket Module Utilizes He for Structure Cooling and Maximizes Pb-17Li Temperature for High Performance

Optimization of DC Blanket Coupled to Brayton Cycle Assuming a FS/Pb-17Li Compatibility Limit of 500°C and ODS FS layer on FW

- RAFS $T_{max} < 550^{\circ}C$; ODS $T_{max} < 700^{\circ}C$
- The optimization was done by considering the net efficiency of the Brayton cycle for an example 1000 MWe case.
 - 3-stage compression + 2 inter-coolers and a single stage expansion
 - $\eta_{Turbine} = 0.93; \eta_{Compressor} = 0.89; \epsilon_{Recuperator} = 0.95$
- Challenging to accommodate high max. wall loading of CS within material and stress limits.

Blanket + Optimized Shield to Minimize Coil-Plasma Stand-off (machine size) while Providing Required Breeding (TBR > 1.1) and Shielding Performance (coil protection)

Maintenance Scheme

13

Port-Maintenance Scheme Includes a Vacuum Vessel Internal to the Coils

- For blanket maintenance, no disassembling and re-welding of VV required and modular coils kept at cryogenic temperatures.
- Articulated boom utilized to remove and replace blanket modules (~5000 kg).
- One main port per FP (4 m x 1.8 m) + possibility of using additional smaller port (~2 m²) for inserting remote maintenance tools and fixtures.
- Modular design of blanket and divertor plates compatible with maintenance scheme.

A Key Aim of the Design is to Minimize Thermal Stresses

- Hot core (including shield and manifold) (~450°C) as part of strong skeleton ring (continuous poloidally, divided toroidally in sectors) separated from cooler vacuum vessel (~200°C) to minimize thermal stresses.
- Each skeleton ring sector rests on sliding bearings at the bottom of the VV and can freely expand relative to the VV.
- Blanket modules are mechanically attached to this ring and can float with it relatively to the VV.
- Bellows are used between VV and the coolant access pipes at the penetrations. These bellows provide a seal between the VV and cryostat atmospheres, and only see minimal pressure difference.
- Temperature variations in blanket module minimized by cooling the steel structure with He (with Δ T<100°C).

Structural Design and Analysis of Coils

16

Desirable Plasma Configuration should be Produced by Practical Coils with "Low" Complexity

- Complex 3-D geometry introduces severe engineering constraints:
 - Distance between plasma and coil
 - Maximum coil bend radius
 - Coil support
 - Assembly and maintenance
- Superconducting material: Nb₃Sn ⇒ B < 16 T; wind & react; heat treatment to relieve strains
 - Need to maintain structural integrity during heat treatment (700° C for ~100's hours)
 - Need inorganic insulator
- Coil structure
 - JK2LB (Japanese austenitic steel) preferred
 - Much less contraction than 316 at cryogenic temp.
 - Relieve stress corrosion concern under high temp., stress and presence of O₂ (Incoloy 908)
 - Potentially lower cost
 - **XS/UTS @4K = 1420/1690 MPa**

More fatigue and weld characterization data needed

Coil Support Design Includes Winding of All Coils of One Field-Period on a Supporting Tubular Structure

- Winding internal to structure.
- Entire coil system enclosed in a common cryostat.
- Coil structure designed to accommodate the forces on the coil

- Large centering forces pulling each coil towards the center of the torus.
- Out-of plane forces acting between neighboring coils inside a field period.
- Weight of the cold coil system.
- Absence of disruptions reduces demand on coil structure.

- Reacted by connecting coil structure together (hoop stress)
- Reacted inside the field-period of the supporting tube.
- Transferred to foundation by ~3 legs per field-period. Legs are long enough to keep the heat ingress into the cold system within a tolerable limit.

Detailed EM and Stress Analysis Performed with ANSYS

• As a first-order estimate, structure thickness scaled to stress & deflection results to reduce required material and cost

Shell model used for trade-

- Avg. thickness inter-coil structure ~20 cm
- Avg. thickness of coil strong-back ~28 cm

Divertor Study

20

Divertor Physics Study for 3-FP ARIES-CS

- Location of divertor plate and its surface topology designed to minimize heat load peaking factor.
- Field line footprints are assumed to approximate heat load profile.
- Analysis being finalized:
- Initial results indicate top and bottom plate location with toroidal coverage from -25° to 25°.
- Optimization being conducted in concert with initial NCSX effort on divertor.
- In anticipation of the final physics results, we proceeded with the engineering design based on an assumed maximum heat flux of 10 MW/m².

ARIES-CS Divertor Design

- Design for a max. q'' of at least 10 MW/m^2
 - Productive collaboration with FZK
 - Absence of disruptions reduces demand on armor (lifetime based on sputtering)
- Development of a new mid-size configuration with good q' accommodation potential, reasonably simple (and credible) manufacturing and assembly procedures, and which could be well integrated in the CS reactor design.

W armor

W allov

inner

- "T-tube" configuration (~10 cm)
- Cooling with discrete or continuous jets
- Effort underway at PPI to develop fabrication method

T-Tube Configuration Looks Promising as Divertor Concept for ARIES-CS (also applicable to Tokamaks)

- Encouraging analysis results from ANSYS (thermomechanics) and FLUENT (CFD) for q'' = 10 MW/m²:
 - W alloy temperature within ~600-1300°C (assumed ductility and recrystallization limits, but requires further material development)
 - Maximum thermal stress $\sim 370~MPa$
- Initial results from experiments at Georgia Tech. seem to confirm thermo-fluid modeling analysis.

- Jet slot width = 0.4 mm
- Jet-wall-spacing = 1.2-1.6 mm
- P = 10 MPa, $\Delta P \sim 0.1$ MPa

• $T_{He} \sim 575 - 700^{\circ}C$

Divertor Manifolding and Integration in Core

- T-tubes assembled in a manifold unit
- Typical target plate (~1.5 m x 2 m) consists of a number of manifold units
- Target plate supported at the back of VV to avoid effect of hot core thermal expansion relative to VV
- **Concentric tube used to route coolant** • and to provide support
- Poossibility of in-situ alignment of \bullet divertor plate if needed

Details of T-tube manifolding to keep FS manifold structure within its temperature limit

body (Steel)

Alpha Loss

25

Accommodating Alpha Particle Heat Flux

- Significant alpha loss in CS (~5%) represents not only loss of heating power in the core, but adds to the heat load on PFC's.
- High heat flux could be accommodated by designing special divertor-like modules (allowing for q" up to ~ 10 MW/m²).
- Impact of alpha particle flux on armor lifetime (erosion) is more of a concern.
- Possibility of using nanostructured porous W (from PPI) to enhance implanted He release e.g. 50-100 nm at ~1800°C or higher Neuron 11-15, 2006/ARR

Summary

- ARIES-CS engineering effort has yielded some interesting and new evolutions in power core design to tackle key CS challenges
 - Blanket/shield optimization to minimize plasma to coil minimum distance and reduce machine size.
 - Separation of hot core components from colder vacuum vessel (allowing for differential expansion through slide bearings).
 - Design of coil structure over one field-period with variable thickness based on local stress/displacement; when combined with rapid prototyping fabrication technique this can result in significant cost reduction.
 - Mid-size divertor unit (T-tube) applicable to both stellarator and tokamak (designed to accommodate at least 10 MW/m²).
 - **Possibility of in-situ alignment of divertor if required.**
 - High alpha loss accommodated by divertor-like module and possible use of nano-structured W to enhance He release.