

MFE Process and Products

Ned Sauthoff

Snowmass 2002 Information Session APS/DPP Meeting October 30, 2001

Identifying issues and assessing burning plasma experiments

	Normal conductor Tokamak FIRE IGNITOR	Superconducting Tokamak ITER	BP contributions to ICCs
Physics			
	Argue for scientific a benefits of a		Assess benefits of a tokamak BPX to ICC path
Technology			
	Identify key scientific, technological, and path issues Determine assessment criteria Perform uniform assessments of approaches		
Experimental Approach and Objectives			

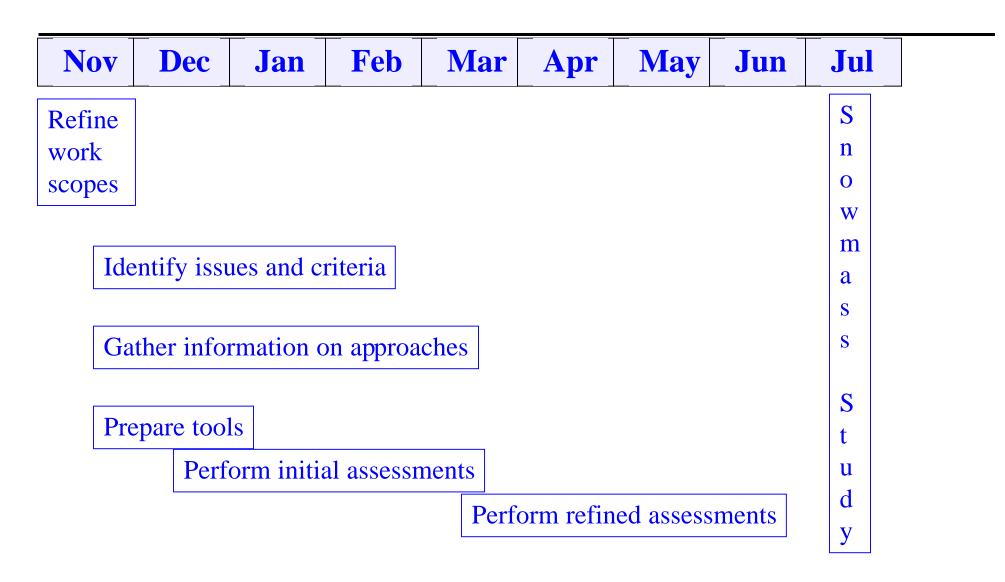
Topical Groups' roles: motivating and assessing burning plasma experiments

Physics	Identify key scientific issues Determine criteria for assessment of approaches Perform uniform assessments of approaches	Wave-Particle Interaction MHD Transport Boundary Physics Alpha Physics	
Technology	Identify key technological issues and potential benefits Determine criteria for assessment of approaches (feasibility, benefits, cost, Perform uniform assessment	Magnets PFC/Heat removal Heating/CD Safety/Tritium/Materials Vacuum Vessel/Remote Cost	
Experimental Approach and Objectives	Identify integration, research oper development path, and "community" issues Determine assessment criteria Perform uniform assessment	"community" issuesIgnition Physics/Burn Contnine assessment criteriaPhysics Operations	

Roles of approach-advocates and ICC community

Normal conductor Tokamak FIRE IGNITOR	Superconducting Tokamak ITER	BP contributions to ICCs
Argue for scientific an benefits of the approx - advocate scientific i - suggest physics "rul "guidelines" - suggest assessment - participate in plasm simulations and res assessments, championing the c approach	ach: ssues es" and criteria a performance sultant	Assess benefits of a tokamak BPX to ICC path - identify ICC issues (physics, technology, development path) - assess applicability of the tokamak results on the ICC development

A Vision of the MFE Final Report Structure


- Executive summary, integrating MFE and IFE [4 pages]
- Introduction, integrating MFE and IFE (goals, background) [3 pages]
- MFE burning plasma science and technology topics (intro, status, R&D needs, plasma requirements to address/resolve R&D needs) [20 pages]
- Approaches to MFE burning plasma studies, including relationship to ICCs, development paths, international context [10 pages]
- Key MFE scientific / technological / path issues, assessment criteria, and figures of merit [4 pages]
- Assessments of approaches to MFE burning plasmas [20 pages] ------
- MFE Appendices [50-100 pages]
- MFE Attachments [unlimited pages]

Roles in the Snowmass Process

• Snowmass working/sub-groups and community participants

- Working Groups (rows) and Approaches (columns) document the known, refine the issues, criteria, and figures of merit, and specify/supply the tool set
- Approaches(columns) advocate for concepts, participating with the working groups
- Working Groups (rows) perform assessments on all the options uniformly
- NSO
 - provides integrated assessment tools
 - performs initial analyses and assists participants in their assessments

Upcoming activities

Prepare known report sections | Draft main report

Group Leaders --- GET INVOLVED!

Normal conductor Tokamak	Superconducting Tokamak	BP contributions to ICCs
FIRE IGNITOR	ITER	
Meade/Thome TBD	Perkins/TBD	Hooper/Jarboe

Physics (Prager)	Transport MHD Energetic Particles/Alpha Physic Wave-Particle Interactions Boundary Physics	(Synakowski, Waltz) (Hegna, Strait) cs (Nazikian, Van Dam) (Batchelor, Porkolab) (Allen, Pitcher)
Technology (Baker)	Magnets PFC/Heat removal Heating/CD Safety/Tritium/Materials Vacuum Vessel/Remote Cost	(Martovetski, Minervini) (Mattas, Ulrickson) (Rasmussen, Temkin) (Petti, Zinkl) (Nelson, Parker) (TBD)
Experimental Approach and Objectives (Taylor)	Diagnostics Integrated Scenarios/ Ignition Physics/Burn Contro Physics Operations Development Path	(Boivin, Young) (Kessel, Politzer) (Wesley, ???) (Najmabadi, Schoenberg)