

B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones, C. Kessel, M. Sawan, D. Driemeyer, M. Ulrickson, D. Strickler, D. Williamson

Snowmass July 13, 2002

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Presentation Outline

• Vacuum Vessel

- Design requirements
- Design concept and features
- Analysis to date
- Status and summary

Remote Handling

- Maintenance Approach & Component Classification
- In-Vessel Transporter
- Component Replacement Time Estimates
- Balance of RH Equipment

• Design and analysis are consistent with pre-conceptual phase, but demonstrate basic feasibility of concepts

13 July 2002 Snowmass Review:

FIRE vacuum vessel

Vacuum vessel functions

- Plasma vacuum environment
- Primary tritium confinement boundary
- Support for in-vessel components
- Radiation shielding
- Aid in plasma stabilization
 - conducting shell
 - internal control coils

• Maximum access for heating/diagnostics

Vacuum vessel parameters

• Configuration:

- Shielding
- Volume of torus interior
- Surface Area of torus interior
- Facesheet thickness
- Rib thickness
- Weight of structure, incl ports
- Weight of torus shielding

Coolant

- Normal Operation
- Bake-out

• Materials

- Torus, ports and structure
- Shielding

Double wall torus water + steel with 60% packing factor 53 m³ 112 m² 15 mm 15 - 30 mm 65 tonnes 100 tonnes

Water, < 100C, < 1 Mpa Water ~150C, < 1 Mpa

316LN ss 304L ss (tentative)

Vessel port configuration

Snowmass Review:

Vessel ports and major components

7

Nuclear shielding concept

- Vessel shielding, port plugs and TF coils provide hands-on access to port flanges
- Port plugs weigh ~7 tonnes each as shown, assuming 60% steel out to TF boundary

13 July 2002

Snowmass Review:

Active and passive stabilizing sys.

• passive plates ~25 mm thick copper with integral cooling

Passive conductor is also heat sink

- Copper layer required to prevent large temperature gradients in VV due to nuclear heating, PFCs
- Passive plates are required in most locations anyway
- PFCs are conduction cooled to copper layer
 - Reduces gradient in stainless skin
 - Extends pulse length

Snowmass Review:

VV octant subassy w/passive structure

Vessel octant subassembly fab. (3)

- Octant-to-octant splice joint requires double wall weld
- All welding done from plasma side of vessel
- Splice plates used on plasma side only to take up tolerance and provide clearance
- Plasma side splice plate wide enough to accommodate welding the coil side joint

FIRE Vacuum Vessel and Remote Handling

002 Snowmass Review:

12

Vessel analysis

• Vessel subjected to numerous loading conditions

- Normal operation (gravity, coolant pressure, thermal loads, etc.)
- Disruption (including induced and conductive (halo) loads
- Other loads (TF current ramp, seismic, etc.)

• Preliminary FEA analysis performed

- Linear, static stress analysis
- Linear, transient and static thermal analyses
- Main issues are disruption loads, thermal stresses

Vacuum vessel mechanical loads

Load	Value	Comment
Gravity load	~3.5 MN	VV ~130 tons, FW,div. ~35 tons, port plugs ~ 185 tons
Vertical displacement event (VDE) load		
Vertical	16 - 32 MN	Based on J. Wesley guidance [1]
Lateral, net	6 - 11 MN	
Seismic load (assumed)		
Vertical acceleration	0.2 g	
Lateral acceleration	0.2 g	
Maximum total vertical load	~22-42 MN	Gravity + VDE * 1.2 (dyn load factor)
Maximum total lateral load	~8-14 MN	VDE * 1.2 (dyn load factor)
Maximum local EM load		Rough estimate from halo currents
Local pressure on vacuum vessel from	~4-7 MPa	with peaking factor up to 0.75 lp
internal components		
EM load from TF ramp	~0.75 MPa	Poloidal conductivity of vessel increased due to Cu stabilizers
Coolant pressure		
Normal operation	<10 atm	
Bakeout	<10 atm	

[1] Disruption loads per Wesley, based on 10T, 50% halo current or 12 T, 40% halo current

Disruption effects on VV

- Disruptions will cause high loads on the VV due to induced currents and conducting (halo) currents flowing in structures
 - Direct loads on vessel shell and ribs
 - Direct loads on passive plates
 - Reaction loads at supports for internal components
 - Divertor assemblies and piping
 - FW tiles
 - Port plugs / in-port components (e.g. RF antennas)
- Dynamic effects should be considered, including:
 - Transient load application
 - Shock loads due to gaps in load paths (gaps must be avoided)
- All loads should be considered in appropriate combinations

e.g. Gravity + coolant pressure + VDE + nuclear / PFC heating + Seismic + ...

TSC runs confirm induced currents will concentrate in passive structures

- Several TSC disruption simulations prepared by C. Kessel
- Centered disruption induces 5 MA in passive plates (out of 6.5)

• VDE simulation used as basis for further analysis

13 July 2002

Snowmass Review:

VDE analysis based on **TSC** runs

- TSC output used to create drivers for Eddycuff model of VV
- Peak loads applied to ANSYS model of VV
- Halo loads from TSC mapped directly onto VV model

Plasma Evolution (TSC)

Current vs Time

Plasma Current

Induced Vessel Current

13 July 2002	Snowmass Review:	0.298	0.303	0.308 0	REXac	uun Kve	esse Cano	d Rêmo	te Hand	lling Ö	0.343	0.348	0.353 20	0.358
--------------	------------------	-------	-------	------------	-------	---------	-----------	--------	---------	------------	-------	-------	-------------	-------

EM Pressure due to Induced Tor. Current

Max force = -1.4-MN radial, +1.2-MN vertical per 1/16 sector (~19 MN tot) (N/m2)

EM Forces due to Halo Current

Divertor loads from current loop

Combined stress, with VDE

- Stresses due to gravity, coolant pressure, vacuum, VDE
- VDE load includes direct EM loads on vessel (induced current and halo) and non-halo divertor loads

Nuclear heating and thermal effects

- Vacuum vessel is subject to two basic heat loads:
 - Direct nuclear heating from neutrons and gammas
 - Heating by conduction from first wall tiles (which in turn are heated by direct nuclear heating and surface heat flux)
- A range of operating scenarios is possible, but the baseline case for analysis assumes:
 - 200 MW fusion power
 - 100 W/cm² surface heat load on first wall
 - pulse length of 20 seconds
- Vessel is cooled by water
 - Flowing in copper first wall cladding
 - Flowing between walls of double wall structure

Heat loads on vessel, at IB midplane

- Fusion power of 200 MW
- Surface heat flux is variable, but 100 W/cm² is assumed

2-D temp distr after 20 sec pulse

Transient response, 150 W/cm^2, lower nuc htg

Inboard midplane

Outboard midplane

13 July 2002

Snowmass Review:

Nuclear heating distribution*

Snowmass Review:

3-D temp distr in VV after 20 s

VV thermal deformation and stress

ANSYS 5.6.1 OCT 25 2000 10:38:49 NODAL SOLUTION STEP=1 SUB =1 TIME=1 (AVG) USUM RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.122066 SMN =.018918 SMX =.122066 .018918 .030379 .04184 .053301 .064762 .076222 .087683 .099144 .110605 .122066

ating Loads on Vessel

Deformation (Max ~ 3 mm)

13 July 2002

Snowmass Review:

Stress (High stress region very localized)

FIRE Vacuum Vessel and Remote Handling

(AVG)

Combined stresses, 20 s pulse

• Nuclear heating, gravity, coolant pressure, vacuum

Combined stresses, 20 s pulse, with VDE

• Nuclear heating, gravity, coolant pressure, vacuum, VDE

Conclusions of vessel analysis

- Can vessel take disruption loads? YES
 - but additional load cases must be run using updated geometry
- Can vessel achieve pulse length? ITS CLOSE
 - 20 second pulse should be achieveable
 - Thicker tiles, external heaters are options to be explored for more margin

• What next?

- Optimized geometry and refined FEA models
- Revised load cases, including lower fusion power, lower surface heat flux, higher plasma current
- Dynamic analysis
- Fatigue analysis, including plastic effects

Remote Handling*

- Maintenance Approach & Component Classification
- In-Vessel Transporter
- Component Replacement Time Estimates
- Balance of RH Equipment
 - *ref T. Burgess

Remote Maintenance Approach

- Hands-on maintenance employed to the fullest extent possible. Activation levels outside vacuum vessel are low enough to permit hands-on maintenance.
- In-vessel components removed as integral assemblies and transferred to the hot cell for repair or processing as waste.
- In-vessel contamination contained by sealed transfer casks that dock to the VV ports.
- Midplane ports provide access to divertor, FW and limiter modules. Port mounted systems (heating and diagnostics) are housed in a shielded assembly that is removed at the port interface.

Remote Maintenance Approach (2)

- Upper and lower auxiliary ports house diagnostic and cryopump assemblies that are also removable at the port interface.
- Remote operations begin with disassembly of port assembly closure plate.
- During extended in-vessel operations (e.g., divertor changeout), a shielded enclosure is installed at the open midplane port to allow human access to the ex-vessel region.
- Remote maintenance drives in-vessel component design and interfaces. Components are given a classification and preliminary requirements are being accommodated in the layout of facilities and the site.

Remote Handling,

Classification of Components

Class 1	Class 2	Class 3	Class 4*
Divertor Modules Limiter Modules Midplane Port Assemblies - RF heating - diagnostics	First Wall Modules Upper and Lower Horiz. Auxiliary Port Assemblies - cryopumps - diagnostics	Vacuum Vessel Sector with TF Coil Passive Plates In-Vessel Cooling Pipes - divertor pipes - limiter pipes	Toroidal Field Coil Poloidal Field Coil Central Solenoid Magnet Structure

* Activation levels acceptable for hands-on maintenance

13 July 2002

Snowmass Review:

In-Vessel Remote Handling Transporter

- Cantilevered Articulated Boom (± 45° coverage)
- Complete in-vessel coverage from 4 midplane ports.
- Local repair from any midplane port.
- Handles divertor, FW modules, limiter (with component specific endeffector).
- Transfer cask docks and seals to VV port and hot cell interfaces to prevent spread of contamination.

Port plug designed for RH

Plug uses ITER-style connection to vessel, accommodates transfer cask

In-Vessel Remote Handling (2)

Divertor Handling End-Effector

- Six (6) positioning degrees of freedom provided by boom (2 DOF) and end-effector (4 DOF)
- Module weight = 800 kgs

Transport position

Installation position

13 July 2002

Snowmass Review:

Component Maintenance Frequency

and Time Estimates

Component or Operation	RH Class	Expected Frequency	Maintenance Time Estimate*		
Divertor Modules			One module: 3.3 weeks		
Limiter Modules		TBD replacements > 2	All (32) modules: 5.9 months		
Midplane Port Assemblies	1		One module: 3.3 weeks		
In-vessel Inspection		Frequent deployment	Bank (5?) modules: 3.5 weeks		
FW Modules			One module: 3.3 weeks**		
Combined FW and Divertor Modules	2	TBD replacements < 2	All (#TBD) modules: TBD		
Auxiliary Port Assemblies †			12 month time target		
Vacuum Vessel Sector with TF Coil		Replacement not	TBD, replacement must be possible and would require		
Passive Plates	3	expected			
In-Vessel Cooling Pipes			extended shutdown		

* Includes active remote maintenance time only. Actual machine shutdown period will be longer by ~ > 1 month.

** Based on single divertor module replacement time estimate.

† Based on midplane port replacement time estimate.

13 July 2002 Snowmass Review:

Remote Handling Equipment Summary

• In-Vessel Component Handling System

 In-vessel transporter (boom), viewing system and end-effectors (3) for: divertor module, first wall / limiter module and general purpose manipulator

In-Vessel Inspection System

- Vacuum compatible metrology and viewing system probes for inspecting PFC alignment, and erosion or general viewing of condition
- One of each probe type (metrology and viewing) initially procured

Port-Mounted Component Handling Systems

- Port assembly transporters (2) with viewing system and dexterous manipulator for handling port attachment and vacuum lip-seal tools
- Includes midplane and auxiliary port handling systems

Remote Handling Equipment Summary (2)

- Component & Equipment Containment and Transfer Devices
 - Cask containment enclosures (3) for IVT, midplane and auxiliary port
 - Double seal doors in casks with docking interfaces at ports and hot cell interfaces
 - Cask transport (overhead crane or air cushion vehicles TBD) and support systems
 - Portable shielded enclosure (1) for midplane port extended opening

Remote Tooling

- Laser based cutting, welding and inspection (leak detection) tools for:
 - vacuum lip-seal at vessel port assemblies (2 sets)
 - divertor coolant pipes (1 set)
- limiter coolant pipes (1 set)
- Fastener torquing and runner tools (2 sets)

• Fire Site Mock-Up

- Prototype remote handling systems used for developing designs are ultimately used at FIRE site to test equipment modifications, procedures and train operators
- Consists of prototypes of all major remote handling systems and component mockups (provided by component design WBS)

13 July 2002 Snowmass Review: