FIRE Plasma Facing Components

Pre-Conceptual Design

Michael Ulrickson Presented at Fusion Summer Study Snowmass, CO July 13, 2002

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline

- Divertor Design Requirements
- Why Choose Double Null?
- UEDGE Modeling Results
- Why Choose W Surface for the Divertor?
- FIRE Divertor Design
- ELMs on FIRE
- Disruption Specifications & Analysis
- Summary

Participants

- M.A Ulrickson, D.L. Youchison, Sandia National Laboratory
- C. Baxi, J. C. Wesley, General Atomics
- J. Brooks, A. Hassenein, Argonne National Laboratory
- D. Driemeyer, Boeing Corp.
- C. E. Kessel, Princeton Plasma Physics Lab.
- B. E. Nelson, Oak Ridge National Laboratory
- T. Rognlein, Lawrence Livermore National Laboratory

- All PFCs remotely maintained
- Materials selection
 - Divertor W rod surface
 - Water cooled copper alloy heat sinks
 - First wall plasma sprayed Be surface on Cu
- First wall and inner divertor attached to cooled copper skin on vacuum vessel
- Eddy current forces determine the strength of attachments and back plates
- Double null configuration

- There are results that indicate vertical stability can be improved by operating the single null plasmas slightly off center vertically. Double null plasmas should be even better.
- Since the PFCs are actively cooled, we can use the power in the coolant to monitor or control up/down ratio. The time constant of the plates is < 1s.
- The average power loading is lower in a double null configuration. We are near the power handling limit.

Operating Scenarios

Case	P _{fusion}	P _{heat}	P _{divertor}	Duration
Baseline	150 MW	20 MW	28 MW	20 s
D-D	5	16	8	214
AT Mode	200	45	22	20

UEDGE Modeling Results

Case	Te _m (eV)	λ _m (cm)	Te _p (eV)	Ne _p (10 ²¹ /m ³)	Q _p (MW/m²)	λ _p (cm)
Α	106	0.8	1.5	61	5.7	6.5
В	152	0.6	15	44	25	1.8
С	138	0.7	14	43	23	2.3
D	138	0.7	13	52	19	2.5

- The inner divertor is easily detached.
 - Particle flux ~ 1 MW/m²
 - Radiated power flux 1.8 MW/m²
- Addition of Be (2%) to the outer divertor cases increases the radiated power to about 6 MW/m² and decreases the particle power to 20 MW/m²
- Addition of Ne to the outer divertor causes partial to full detachment (~12 Mw/m² to ~6 MW/m²)

FIRE Divertor Capability

- Outer divertor
 - Maximum power load 20-25 MW/m²
 - Pulse length unlimited (actively cooled)
- Inner divertor and baffle
 - Maximum power load 1-5 MW/m²
 - Pulse length 10-50 s with passive cooling
- First Wall
 - Power 0.3-0.6 MW/m² for up to 50 s passive cooling

- Loss of particles from the plasma:
 - Number of particles in the plasma $1 \ge 10^{22}$
 - Energy confinement time 0.5-0.8 s (use 0.65 s)
 - Particle confinement time 2-10 τ_{E}
 - Fueling rate required 3.1 x $10^{21}/s$ (1.25-10 x $10^{21}/s$)
 - Assuming the fueling efficiency is 50% implies 6.2 x 10²¹/s (23 Pa m³/s; range 10-75 Pa m³/s)
- Recommendation 75 Pa m³/s maximum fueling rate (net equal D and T)

Particle Pumping Requirements

- Particle pumping rate required for He removal
 - Fusion burn rate 1 x 10²⁰/s (200 MW)
 - He fraction in the divertor 0.02
 - Wall recycling coefficient 0.5
 - Required divertor pumping is 1.4-2.7 x 10^{22} /s (50-100 Pa m³/s)
 - Very similar to the previous estimate
- Recommendation provide pumping for up to 100 Pa m³/s

Why Choose W Surface for the Divertor?

- Both TFTR and JET have observed large amounts of T retention in redeposited carbon layers and dust (substantial amounts far from the divertor)
- Mechanisms involving hydrocarbon radical transport were presented at PSI
- There is no effective method for removing these layers
- Predicted tritium inventories are mg per burn second

Why Choose W Surface for the Divertor?

- Tungsten or Molybdenum have been successfully used on ASDEX-U and C-Mod
- The results of the ITER development program have shown W on Cu can withstand up to 25 MW/m² without damage
- High Z materials have very low predicted erosion and low T retention

Tungsten Rod PFC Design

Rods 7 mm long

ELMs on FIRE

- ELM Energy Deposition on the FIRE Divertor Plates assumed
 - Either 2% or 5% of stored energy lost
 - Energy deposited over either the same footprint as normal operation or a greater area up to three times larger
 - The duration of the ELM was between 0.1 and 1 ms
- ELMS are no problem if no surface melting occurs

ELMs on FIRE

- Melting will not occur if the energy deposition is less than the intersection of the temperature rise curve and the normal operating line
- Most of the 2% cases are acceptable, few of the 5% cases are acceptable
 - Limit for 0.1 ms duration is about 0.3 MJ/m² (partially detached operation, 12 MW/m²)
 - Limit for 1.0 ms duration is about 1.0 MJ/m² (partially detached operation, 12 MW/m²)
- We must reduce the magnitude of ELMs

ELM Analysis For FIRE

Sandia National Laboratories

- Report G Saibene EFPW 2001
- At high density (nped >70% nGR), ELMs losses can become purely convective (particle ELMs), with ⊽TELM~0: minimum Type I ?
- Total suppression of Type I ELMs in JT-60U, AUG & DIII-D QDB, partial in JET & DIII-D. C-Mod is a special case (no Type I ELMs!)
 - Conditions of access vary: high δ is required (possibly q95 >3.5)
 - High βp (JT60-U) and proximity to DN (ASDEX-U, JT60-U?)
 - Key requirement : high edge shear!!

Disruption Specifications

- Current Quench Phase
 - Magnetic stored energy 35 MJ
 - Current decay time 2-6 ms
 - Average energy deposition to first wall 0.5 MJ/m²
 - Toroidal peaking factor 2:1
 - Thermal modeling predicts <0.1 mm melting of Be per disruption.

- Taking either a peaked or a uniform distribution gives the same halo current in the worst location.
- For 16 divertor modules the maximum halo current is 200 kA.
- Module size
 - Inner poloidal length: 0.58 m current path: 0.14 m
 - Outer poloidal length: 0.68 mcurrent path: 0.41 m
- The force exerted on a module is
 - Inner: 0.3 MN
 - Outer: 0.77 MN

PC-Opera Capabilities

- Calculates the vector potential given an array of current carrying filaments and materials (including magnetic materials)
- Fully 3-D version
- The TSC model of VDE has about 1400 current filaments
- The FIRE geometry requires about 15,000
 elements for a proper description
- Time dependent current drive capability used.

PC Opera Model

t=0.303 s, Passive Plates

PFCs VDE t = 0.303 s

Outer Divertor Plate VDE

Inner Divertor & Baffle t = 0.302

Note current loops through thickness.

Disruption Mitigation

- There have been several important developments concerning disruption prediction in the last ~4 yrs
 - Several groups have developed a neural network that predicts a disruption is about to occur
 - the networks have predicted disruptions with 50 ms warning and an accuracy >90% with <5% false alarms
 - The networks require training to properly use the diagnostics available
 - This is sufficient warning to take action to mitigate the effects of a disruption
- Massive gas puff has mitigated disruptions on DIII-D

Summary

- Addition of neon to the outer divertor channel can help control divertor heat loads
- Type I ELMs are a life limiting phenomenon for the outer divertor. Additional R&D on mitigation methods is needed.
- Highly radiative disruptions (i.e., mitigated with gas puff) are likely to cause slight melting of the Be first wall.
- At the pre-conceptual design level the stresses in the divertor structure are acceptable.

