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Divertor Design Requirements

• All PFCs remotely maintained
• Materials selection

– Divertor W rod surface
– Water cooled copper alloy heat sinks
– First wall plasma sprayed Be surface on Cu

• First wall and inner divertor attached to cooled 
copper skin on vacuum vessel

• Eddy current forces determine the strength of 
attachments and back plates

• Double null configuration
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Why Choose Double Null?

• There are results that indicate vertical stability 
can be improved by operating the single null 
plasmas slightly off center vertically. Double null 
plasmas should be even better.

• Since the PFCs are actively cooled, we can use 
the power in the coolant to monitor or control 
up/down ratio. The time constant of the plates is < 
1s.

• The average power loading is lower in a double 
null configuration. We are near the power 
handling limit.
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Operating Scenarios

Case Pfusion Pheat Pdivertor Duration

Baseline 150 MW 20 MW 28 MW 20 s 

D-D 5 16 8 214 

AT Mode 200 45 22 20 
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UEDGE Modeling Results

Case Tem 
(eV) 

λm 
(cm) 

Tep 
(eV) 

Nep 
(1021/m3) 

Qp 
(MW/m2)

λp 
(cm) 

A 106 0.8 1.5 61 5.7 6.5 

B 152 0.6 15 44 25 1.8 

C 138 0.7 14 43 23 2.3 

D 138 0.7 13 52 19 2.5 
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UEDGE Modeling Results

• The inner divertor is easily detached.
– Particle flux ~ 1 MW/m2

– Radiated power flux 1.8 MW/m2

• Addition of Be (2%) to the outer divertor cases 
increases the radiated power to about 6 MW/m2

and decreases the particle power to 20 MW/m2

• Addition of Ne to the outer divertor causes partial 
to full detachment (~12 Mw/m2 to ~6 MW/m2)
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FIRE Divertor Capability

• Outer divertor
– Maximum power load 20-25 MW/m2

– Pulse length unlimited (actively cooled)
• Inner divertor and baffle

– Maximum power load 1-5 MW/m2

– Pulse length 10-50 s with passive cooling
• First Wall

– Power 0.3-0.6 MW/m2 for up to 50 s passive cooling
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Particle Pumping Requirements

• Loss of particles from the plasma:
– Number of particles in the plasma 1 x 1022

– Energy confinement time 0.5-0.8 s (use 0.65 s)
– Particle confinement time 2-10 τE
– Fueling rate required 3.1 x 1021/s (1.25-10 x 1021/s)
– Assuming the fueling efficiency is 50% implies 6.2 

x 1021/s (23 Pa m3/s; range 10-75 Pa m3/s)
• Recommendation 75 Pa m3/s maximum fueling 

rate (net equal D and T)
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Particle Pumping Requirements

• Particle pumping rate required for He removal
– Fusion burn rate 1 x 1020/s (200 MW)
– He fraction in the divertor 0.02
– Wall recycling coefficient 0.5
– Required divertor pumping is 1.4-2.7 x 1022/s (50-

100 Pa m3/s)
– Very similar to the previous estimate

• Recommendation provide pumping for up to 100 
Pa m3/s
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Why Choose W Surface for the Divertor?

• Both TFTR and JET have observed large amounts 
of T retention in redeposited carbon layers and 
dust (substantial amounts far from the divertor)

• Mechanisms involving hydrocarbon radical 
transport were presented at PSI

• There is no effective method for removing these 
layers

• Predicted tritium inventories are mg per burn 
second
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Why Choose W Surface for the Divertor?

• Tungsten or Molybdenum have been successfully 
used on ASDEX-U and C-Mod

• The results of the ITER development program 
have shown W on Cu can withstand up to 25 
MW/m2 without damage

• High Z materials have very low predicted erosion 
and low T retention
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FIRE Divertor Design
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Tungsten Rod PFC Design

32 mm

100 mm

Rods 7 
mm long
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ELMs on FIRE

• ELM Energy Deposition on the FIRE Divertor 
Plates assumed
– Either 2% or 5% of stored energy lost
– Energy deposited over either the same footprint as 

normal operation or a greater area up to three times 
larger

– The duration of the ELM was between 0.1 and 1 ms
• ELMS are no problem if no surface melting 

occurs
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ELMs on FIRE

• Melting will not occur if the energy deposition is 
less than the intersection of the temperature rise 
curve and the normal operating line

• Most of the 2% cases are acceptable, few of the 
5% cases are acceptable
– Limit for 0.1 ms duration is about 0.3 MJ/m2

(partially detached operation, 12 MW/m2)
– Limit for 1.0 ms duration is about 1.0 MJ/m2

(partially detached operation, 12 MW/m2)
• We must reduce the magnitude of ELMs
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ELM Analysis For FIRE
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Possibilities for ELM Mitigation

• Report - G Saibene  – EFPW 2001
• At high density (nped >70% nGR), ELMs losses 

can become purely convective (particle ELMs), 
with ∇TELM~0: minimum Type I ?

• Total suppression of Type I ELMs in JT-60U, AUG 
& DIII-D QDB,  partial in JET & DIII-D. C-Mod is a 
special case (no Type I ELMs!)
– Conditions of access vary: high  δ is required (possibly 

q95 >3.5)
– High βp (JT60-U) and proximity to DN (ASDEX-U, JT60-

U?)
– Key requirement : high edge shear!!
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Disruption Specifications

• Current Quench Phase
– Magnetic stored energy 35 MJ
– Current decay time 2-6 ms
– Average energy deposition to first wall 0.5 MJ/m2

– Toroidal peaking factor 2:1
– Thermal modeling predicts <0.1 mm melting of Be 

per disruption.
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Halo Currents

• Taking either a peaked or a uniform distribution 
gives the same halo current in the worst location.

• For 16 divertor modules the maximum halo 
current is 200 kA.

• Module size
– Inner poloidal length: 0.58 m current path: 0.14 m
– Outer poloidal length: 0.68 mcurrent path: 0.41 m

• The force exerted on a module is
– Inner: 0.3 MN
– Outer: 0.77 MN
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PC-Opera Capabilities

• Calculates the vector potential given an array of 
current carrying filaments and materials 
(including magnetic materials)

• Fully 3-D version 
• The TSC model of VDE has about 1400 current 

filaments
• The FIRE geometry requires about 15,000 

elements for a proper description
• Time dependent current drive capability used.
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PC Opera Model
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t=0.303 s, Passive Plates
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PFCs VDE t = 0.303 s
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Outer Divertor Plate VDE

Force Eddy Current
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Inner Divertor & Baffle t = 0.302

Note current loops through thickness.
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Disruption Mitigation

• There have been several important developments 
concerning disruption prediction in the last ~4 yrs
– Several groups have developed a neural network 

that predicts a disruption is about to occur
• the networks have predicted disruptions with 50 ms 

warning and an accuracy >90% with <5% false alarms
– The networks require training to properly use the 

diagnostics available
– This is sufficient warning to take action to mitigate 

the effects of a disruption
• Massive gas puff has mitigated disruptions on 

DIII-D
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Summary

• Addition of neon to the outer divertor channel can 
help control divertor heat loads

• Type I ELMs are a life limiting phenomenon for 
the outer divertor. Additional R&D on mitigation 
methods is needed.

• Highly radiative disruptions (i.e., mitigated with 
gas puff) are likely to cause slight melting of the 
Be first wall.

• At the pre-conceptual design level the stresses in 
the divertor structure are acceptable.
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