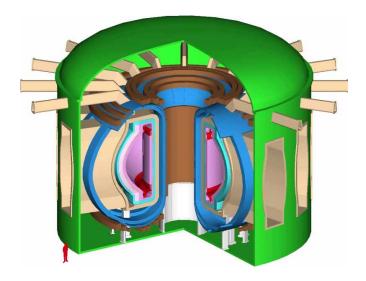
Exploring ARIES-like

Advanced Burning Plasma Regimes in FIRE

Dale M. Meade for the National FIRE Study Team

20th IEEE/NPSS Symposium on Fusion Engineering San Diego, CA


October 15, 2003

http://fire.pppl.gov

A Decade of Studies has Identified the Requirements for Attractive Fusion Power

Fusion Power Plant ARIES-AT

Fusion Power 1,800 MW Plasma Volume 350 m³

Advanced Tokamak Features

- Self heated by fusion products (~90%)
- Smaller size
 - Improved confinement (reduced turbulence)
- High fusion power density for economics

$$-\sim p^2 \sim \beta^2 B^4 \quad (\beta_N > 4)$$

- · Efficient steady state operation
 - self generated confinement magnetic field (bootstrap current) (>75%)
- A burning plasma experiment needs the capability to explore advanced tokamak operation

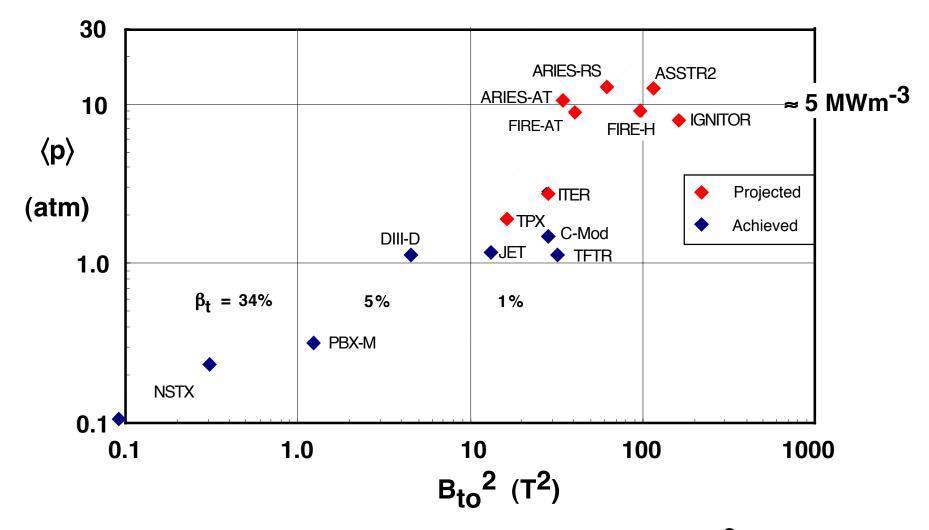
High Power Density Needed for Attractive Reactors

• The fusion power density is given by:

$$P_{f} / V_{p} \sim n^{2} \langle \sigma v \rangle = n^{2} T^{2} \langle \sigma v \rangle / T^{2}$$

Note: $\langle \sigma v \rangle / T^2 \approx \text{constant from 10 to 20 keV}$

Define $\beta = \langle p \rangle / B^2$


Then

$$\mathsf{P}_{\mathsf{f}} / \mathsf{V}_{\mathsf{p}} \sim \beta^2 \, \mathsf{B}^4$$

or (a) $P_f / V_p \sim \beta_t^2 B_{to}^4$ where B_{to} is the field at the magnetic axis

or (b)
$$P_f / V_p \sim \beta_t^2 (B_{to} / B_{coil})^4 B_{coil}^4$$

Physics limit Geometry Engineering limit

Fusion Will Require Plasma Pressures of 10 to 15 Atm.

- "Attractive" fusion systems require power densities of ~ 5 MWm^{-3}
- Plasma pressure must be increased by a factor of 10 while maintaining $\beta \sim 5\%$

Guidelines for Estimating H-Mode Performance (0-D)

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

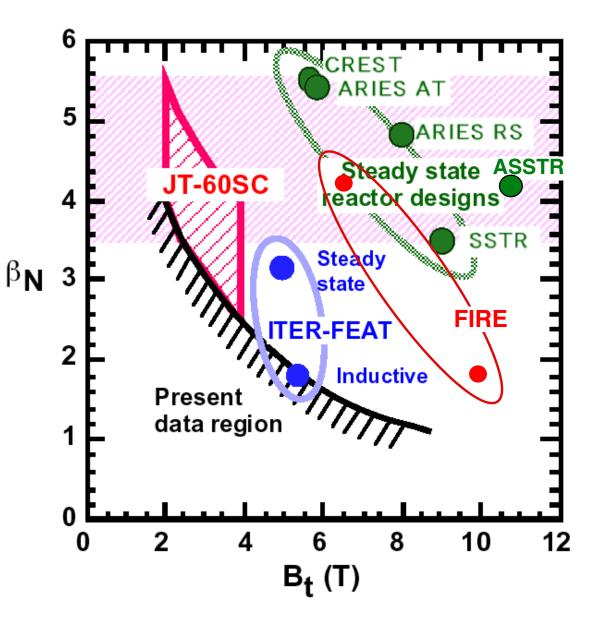
$$\tau_{\rm E} = 0.144 \ {\rm I}^{0.93} \ {\rm R}^{1.39} {\rm a}^{0.58} \ {\rm n}_{20}^{0.41} {\rm B}^{0.15} {\rm A}_{\rm i}^{0.19} {\rm \kappa}^{0.78} \ {\rm P}_{\rm heat}^{-0.69} \ {\rm H(y,2)}$$

Density Limit - Based on today's tokamak data base

$$n_{20} \le 0.8 n_{GW} = 0.8 l_p / \pi a^2$$
,

Beta Limit - theory and tokamak data base

 $\beta \leq \beta_{N}(I_{p}/aB), \quad \beta_{N} < 2.5 \text{ conventional, } \beta_{N} \sim 4 \text{ advanced}$

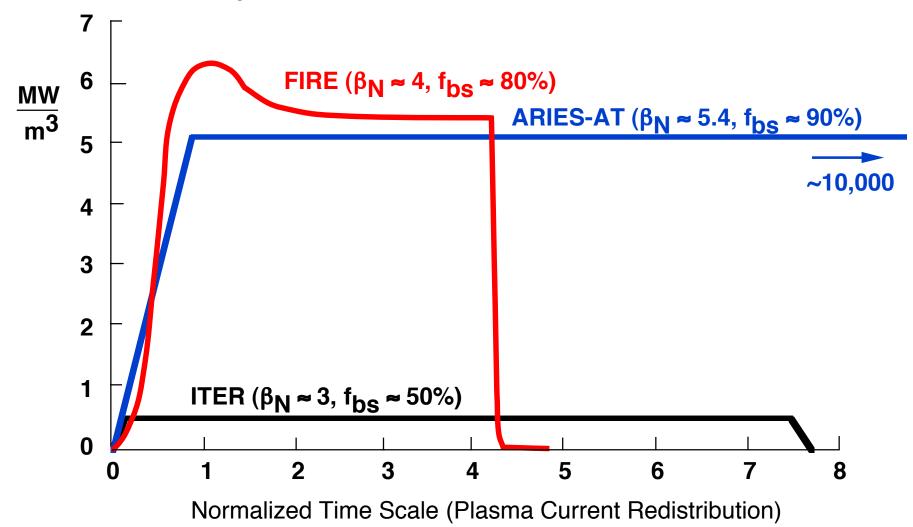

H-Mode Power Threshold - Based on today's tokamak data base

Pth
$$\geq$$
 (2.84/Ai) $n_{20}^{0.58} B^{0.82} Ra^{0.81}$, same as ITER-FEAT

Helium Ash Confinement $\tau_{He} = 5 \tau_{E}$, impurities = 3% Be, 0% W

FIRE can Access Regimes of Interest to Advanced Reactors

- Reactor studies ARIES in the US and CREST/SSTR in Japan have determined the requirements for an attractive fusion reactor.
- Present tokamak results are far from the attractive reactor regime.
- The present ITER-FEAT design **does not** access the attractive reactor regime.
- The present FIRE design **does** access the attractive reactor regime.



FIRE/ITER Would Test Advanced Physics for ARIES-RS

	ITER	FIRE	ARIES-RS
κ_x plasma elongation	1.85	2.0	2.0
δ_x plasma triangularity	0.49	0.7	0.7
Divertor Configuration	SN	DN	DN
β_N , normalized beta, AT	~3	~4	4.8
Bootstrap fraction, AT	50	80	88
B (T)	5.3	10(6.5)	8
R (m)	6.2	2.14	5.5
Fusion Core Mass, tonne	19,000	1,400	13,000
Plasma Volume, m ²	840	27	350
P _{fusion} (MW)	400	150	2170
P _{fusion} /Vol (MW/m ³)	0.5	5.6	6.2
Neut Wall loading (MW/m ²)	0.57	2.7	4
P_{loss}/R_{x}	20	20	100
Divertor Target material	C(W?)	W	W
$Q = P_{fus}/P_{ext}$ Conventional	10	10	n.a.
$Q = P_{fus}/P_{ext}$ Advanced Tok	5	5	27
Burn Time			
seconds	400 - 3,000	20 - 40	20,000,000
Current Profile Equilb,%	86 - 99.99	86 - 98	100

FIRE Could Explore Advanced Tokamak Regimes Close to ARIES-AT Parameters

Fusion Power Density

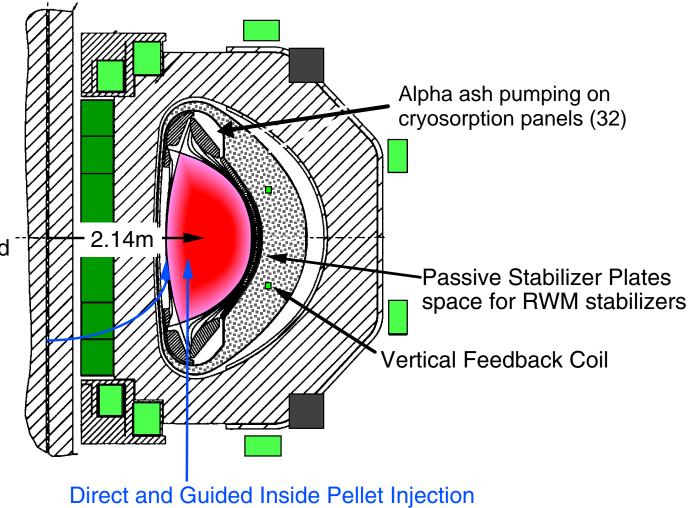
FIRE will Emphasize Advanced Tokamak Goals

Burning Plasma Physics

Q	~ 10 as target, ignition not precluded
$f_{\alpha} = P_{\alpha}/P_{heat}$	~ 66% as target, up to 83% at $Q = 25$
TAE/EPM	stable at nominal point, able to access unstable

Advanced Toroidal Physics

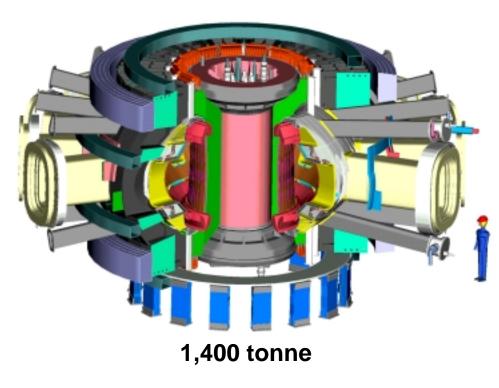
$$\begin{split} f_{bs} &= I_{bs}/I_p & \sim 80\% \text{ (goal)} \\ \beta_N & \sim 4.0, \text{ n } = 1 \text{ wall stabilized} \end{split}$$


Quasi-stationary Burn Duration (use plasma time scales)

 $\begin{array}{ll} \mbox{Pressure profile evolution and burn control} &> 10 \ \tau_{\rm E} \\ \mbox{Alpha ash accumulation/pumping} &> several \ \tau_{\rm He} \\ \mbox{Plasma current profile evolution} &2 \ to \ 5 \ \tau_{\rm skin} \\ \mbox{Divertor pumping and heat removal} & several \ \tau_{\rm divertor} \end{array}$

The FIRE Design has Adopted ARIES-RS Plasma Features

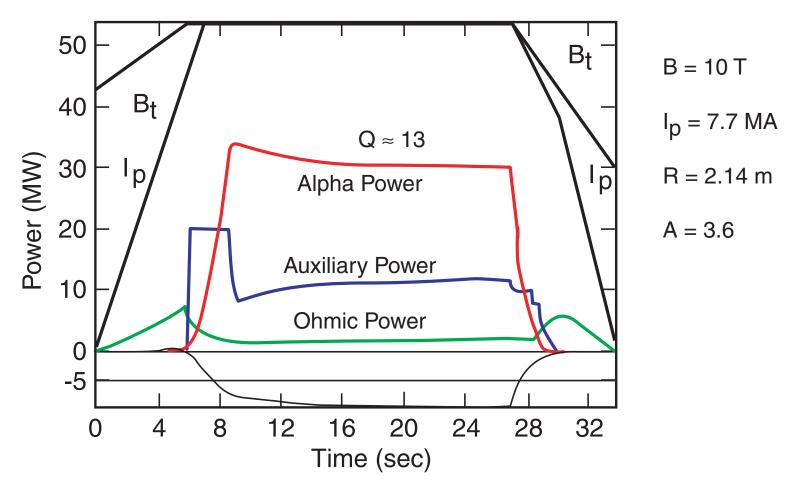
AT Features


- strong shaping κ_{χ} , κ_{a} = 2.0, 1.85 δ_{χ} , δ_{95} = 0.7, 0.55
- segmented central solenoid
- double null double divertor pumped
- low ripple (<0.3%)
- internal control coils
- space for RWM stabilizers
- inside pellet injection

Fusion Ignition Research Experiment

(FIRE)

http://fire.pppl.gov



Design Features

- R = 2.14 m, a = 0.595 m
- B = 10 T (~6.5 T AT)
- W_{mag}= 5.2 GJ
- $I_p = 7.7 \text{ MA} (~5 \text{ MA AT})$
- $P_{aux} \leq 20 \text{ MW}$
- $Q \approx 10$, $P_{\text{fusion}} \sim 150 \text{ MW}$
- Burn Time \approx 20 s (~ 40 s AT)
- Tokamak Cost ~ \$350M (FY02)
- Total Project Cost ≈ \$1.2B (FY02) at Green Field site.

Mission: Attain, explore, understand and optimize magnetically-confined fusion-dominated plasmas.

Simulation of Conventional H-Mode in FIRE

• ITER98(y, 2) with H(y, 2) = 1.1, n(0)/ $\langle n \rangle$ = 1.2, and n/ n_{GW} = 0.67

• Burn Time $\approx 20 \text{ s} \approx 21 \tau_E \approx 4 \tau_{He} \approx 2 \tau_{CR}$

Q = Pfusion/(Paux + Poh)

Burning Plasma Initiatives or Task Forces

- Advanced Tokamak (U. S. Plan to achieve required capability-ARIES as guide) (κ , δ , A, SN/DN, β_N , f_{bs} ,)
 - PFCs (high heat flux, tritium retention)
 - RWM Stabilization What is required and what is feasible?
 - Integrated Divertor and AT
- Plasma Control (heating, current-drive, fueling, fast position control)
- Integrated Simulation of Burning Plasmas
- Diagnostic Development, a long term program is needed.
- Plasma Facing Components for BPs and reactor.

Areas of Synergy and Possible Joint Work (FIRE, ITER)

- Plasma Facing Components (Divertor and First Wall)
 - high power density
 - long pulse capability
 - low tritium retention
 - elm erosion and disruption survivability
 - maintainability
- Vacuum Vessel (blanket modules and shielding port plugs)
 - low activation ?
 - nuclear heating ---- blanket module test assemblies
 - disruptions
 - integrate with closely coupled control/stabilization coils and diagnostics
- Plasma Heating, Current Drive and Fueling
 - development/design of ICRF, LHCD systems for BP scenarios
 - interface with fusion environment (esp. launchers)
- Diagnostics Development and Design Integration
 - new diagnostics for J(r), E(r), fluctuations, alpha particles
 - integration with fusion environment(e.g., radiation induced conductivity)
- Advanced tokamak modes approaching ARIES-RS/AT