

Spherical Tokamak Plasma Science & Fusion Energy Development

Martin Peng **NSTX Program Director**

Oak Ridge National Laboratory @ Princeton Plasma Physics Laboratory

PU Graduate Seminar in Plasma Physics AST558

April 25, 2005

PPPI

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL PPPL **PSI SNL UC Davis UC** Irvine **UCLA** UCSD **U** Maryland **U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI loffe Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** U Quebec

Spherical Tokamak (ST) Offers Rich Plasma Science Opportunities and High Fusion Energy Potential

- What is ST and why?
- World ST community
- Cost-effective steps to fusion energy
- Scientific opportunities of ST
 - How does shape (κ , δ , A ...) determine pressure?
 - How does turbulence enhance transport?
 - How do plasma particles and waves interact?
 - How do hot plasmas interact with walls?
 - How to supply magnetic flux without solenoid?
- Wrap-up

Tokamak Theory in Early 1980's Showed Maximum Stable β_T Increased with Lowered Aspect Ratio (A)

 A. Sykes et al. (1983); F. Troyon et al. (1984) on maximum stable toroidal beta β_T:

 $\beta_{\text{Tmax}} = C I_p / a \langle B \rangle \approx 5 C \kappa / A q_j; \ \langle B \rangle \approx B_T \text{ at standard } A$ $C \approx \text{constant} (~ 3 \% \text{m·T/MA}) \Rightarrow \beta_N \qquad \qquad 7 \qquad \text{Plasm}$

- $\langle B \rangle$ = volume average $B \Rightarrow B_T$
- κ = b/a = elongation
- $A = R_0/a = aspect ratio$
- $q_I \approx$ average safety factor
- I_p = toroidal plasma current
- $B_T \approx$ applied toroidal field at R_0

• Peng & Strickler (1986): What would happen to tokamak as $A \rightarrow 1$?

– How would β_N , κ , \mathbf{q}_i , change as functions of **A**?

Minimizing Tokamak Aspect Ratio Maximizes Field Line Length in Good Curvature \Rightarrow High β Stability

Small-R close to Tokamak & large-R close to CT.

ST Plasma Elongates Naturally, Needs Less TF & PF Coil Currents, Increases $I_p/aB_T \Rightarrow$ Higher β_{Tmax}

• Naturally increased $\kappa \sim 2$; $I_{TF} < I_p$, $I_{PF} < I_p \Rightarrow$ higher I_p ; lower device cost

- Increased $I_p/aB_T \sim 7 \text{ MA/m} \cdot T \implies \beta_{Tmax} \sim 20\%$, if $\beta_N \sim 3$
- Increased $I_p q_{edge} / aB_T \sim 20 \text{ MA/m} \cdot T \implies \text{improved confinement?}$

ST Research Is Growing Worldwide

Concept Exploration (~0.3 MA) Ο

Proof of Principle (~MA) Ο

ETE (B)

PU AST558, 4/25/05

SUNIST (PRC)

HIST (J)

1050 **TS-4 (J)**

ST Science & Fusion Energy

ST Is Closest to Tokamak; Operates with High Safety Factor and More Comparable Self & Applied Fields

Very Low Aspect Ratio (A) Introduces New Opportunities to Broaden Toroidal Plasma Science

ST Plasmas Extends Toroidal Parameters

A = R/a can be \geq 1.1

How does shape determine pressure?

- Strong plasma shaping & self fields (vertical elongation \leq 3, $B_p/B_t \sim 1$)
- Very high β_T (~ 40%), $\beta_N \& f_{Bootstrap}$ How does turbulence enhance transport?
- Small plasma size relative to gyro-radius (a/ρ_i~30–50)
- Large plasma flow (M_A = V_{rotation}/V_A \le 0.3)
- Large flow shearing rate ($\gamma_{ExB} \leq 10^6/s)$

How do plasma particles and waves interact?

- Supra-Alfvénic fast ions $(V_{fast}/V_A \sim 4-5)$
- High dielectric constant ($\epsilon = \omega_{pe}^2 / \omega_{ce}^2 \sim 50$) How do plasmas interact with walls?
- Large B mirror ratio in edge ($M_B \le 4$, $f_T \rightarrow 1$)
- Strong field line expansion (> factor of 10)

How to supply mag flux without solenoid?

• Small magnetic flux content (~ $\ell_i R_0 I_p$)

Answering the Plasma Science Questions Also Enable Cost-Effective Steps toward Fusion Energy

Plasma Science Questions in Extended ST Parameter Space	⇒	Optimize Fusion DEMO & Development Steps
How does shape determine pressure?	⇒	Lowered magnetic field and device costs
How does turbulence enhance transport?	⇒	Smaller unit size for sustained fusion burn
How does plasma particles and waves interact?	⇒	Efficient fusion α particle, neutral beam, & RF heating
How do hot plasmas interact with wall?	⇒	Survivable plasma facing components
How to supply magnetic flux without solenoid?	⇒	Simplified smaller design, reduced operating cost

Optimized Device Configuration Features of ST Also Fulfill the CTF Mission Effectively

<u>Features Required by High Duty</u> <u>Factor & Neutron Fluence</u>

- Single-turn demountable center leg for toroidal field coil required to achieve small size and simplified design.
- Fast remote replacement of all fusion nuclear test components (blanket, FW, PFC) & center post required to permit high duty factor & neutron fluence.
- Large blanket test areas \propto (R+a) κ a.
- Adequate tritium breeding ratio & small fusion power from low A required for long term fuel sufficiency.
- High heat fluxes on PFC.
- Initial core components could use DEMO-relevant technologies (such as from ITER and long-pulse tokamaks).

12-MA power supply – Single-turn TF.

Mid-Plane Test Modules, Neutral Beam Injection, RF, Diagnostics Are Arranged for Fast Removal & Insert

- 8 mid-plane blanket test modules provides ~ 15 m² at maximum flux
 - Additional cylindrical blanket test area > 50 m² at reduced flux
- 3 m² mid-plane access for neutral beam injection of 30 MW
- 2 m² mid-plane access for RF (10 MW) and diagnostics
- All modules accessible through remote handling casks (~ITER)

Future ST Steps Are Estimated to Require Moderate Sizes to Make Key Advances toward DEMO

Device	NS	TX	NSST		CTF		DEMO
Mission	Proof of	Principle	Performance Extension		Energy Development, Component Testing		Practicality of Fusion Electricity
R (m)	0.8	85	~1.5		~1.2		~3
a (m)	0.6	65	~0.9		~0.8		~2
κ, δ	2.5,	0.8	~2.7, ~0.7		~3, ~0.5		~3.2, ~0.5
I _p (MA)	1.5	1	~5	~10	~9	~12	~25
B _T (T)	0.6	0.3	~1.1	~2.6	~2.1		~1.8
Pulse (s)	1	5	~50	~5	Steady state		Steady state
P _{fusion} (MW)	_		~10	~50	~77	~300	~3100
W _L (MW/m ²)	-		_		~1	~4	~4
Duty factor (%)	~0	.01	~0.01		~15	30	60
TFC; Solenoid	Multi-turn:	; Solenoid	Multi-turn; Solenoid		Single-turn; No-solen.		Single-turn; No-solen.

National Spherical Torus Experiment

PU AST558, 4/25/05

NSTX Exceeded Standard Scaling & Reached Higher I_p/aB_T , Indicating Better Field and Size Utilization

 Verified very high beta prediction ⇒ new physics:

$$\begin{split} \beta_{T} &= 2\mu_{0}\langle p \rangle \ / \ B_{T0}^{2} \leq 38\% \\ \beta_{N} &= \beta_{T} \ / \ (I_{p}/aB_{T0}) \leq 6.4 \\ \langle \beta \rangle &= 2\mu_{0}\langle p \rangle \ / \ \langle B^{2} \rangle \leq 20\% \end{split}$$

- Obtained nearly sustained plasmas with neutral beam and bootstrap current alone
 - Basis for neutral beam sustained ST CTF at Q~2
 - Relevant to ITER hybrid mode optimization
- To produce and study full noninductive sustained plasmas
 - Relevant to **DEMO**

Global and Thermal $\tau_{\rm E}$'s Compare Favorably with Higher A Database

- Compare with ITER scaling for total confinement, including fast ions
- TRANSP analysis for thermal confinement

L-modes have higher non-thermal component and comparable τ_{E} ! Why?

Bell, Kaye, PPPL

Ion Internal Transport Barrier in Beam-Heated H-Mode Contrasts Improved Electron Confinement in L-Mode

Analysis Shows Stability to Modes at Ion Gyro-Scale & Strong Instability at Electron Gyro-Scale (H-Mode)

Core Transport Physics	In ion confinement zone	MHD event
Thermal Conductivity	• $\chi_{ion} \sim \chi_{neoclassical}$ • $\chi_{elec} >> \chi_{ion}$	Ne ^{8,9+}
Impurity Diffusivity	• D _{imp} ~ D _{neoclassical}	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Micro- instability	 Driven by T and n gradients 	Ne puff
calculations	 k_θρ_i < 1 (ion gyro- scale) stable or 	$14 \xrightarrow{\text{max}} k_{\theta} p_i \gg 1$
	suppressed by V _o shear	
	 k_θρ_i >> 1 (electron gyro-scale) strongly unstable 	α 4 2
	Sadaraaha UUU DDDU U Mardand	0 0.2 0.4 r/a 0.6 0.8

Cadarache, JHU, PPPL, U. Maryland

Detailed Diagnosis and Gyrokinetic Analysis of β ~ 1 Turbulence Has Broad Scientific Importance

Can $k_{\perp}\rho_{\perp} \ge 1$ turbulence at $\beta \sim 1$ be understood?

Armitage (U. Colorado)

Gyrokinetic turbulence simulation in accretion disk of supermassive black hole at galactic center, assuming damping of turbulence by plasma ions vs. electrons

- Astrophysics turbulence dynamics: cascading of MHD turbulence to ion scales is of fundamental importance at β > 1
- Fusion's gyrokinetic formalism apply to astrophysical turbulence, covering shocks, solar wind, accretion disks
- Laboratory ST plasmas provide validation of formulism

Kinetic instabilities are an important issue for Spherical Tori and ITER

- MITONAL FUSION FACILITY
- Energetic particle modes are most ubiquitous, cause most losses
 - Chirping, lower frequency
 - Better overlap precession, bounce and MHD frequencies at low A.
- Toroidal Alfvén Eigenmodes common
 - Fewer induced losses
 - more important at high A
- Compressional Alfvén Eigenmodes and $O^{0.0} O^{0.2} O^{0.4} O^{0.6} \beta_{fast}(0) / \beta_{tot}(0) O^{0.6}$ Global Alfvén Eigenmodes are common, but apparently benign.
- Development of M3D, HYM, NOVA codes for prediction/analysis.

A Broad Spectrum of Energetic Particle Driven Modes is Seen on NSTX

EBW Heating & CD Applied to ST Plasmas Present Unique Opportunities for Scientific & Fusion Energy Research

- Off-axis EBWCD may be critical for sustained, solenoid-free, high β ST operation
- Local EBWCD may provide an effective tool for tearing mode stabilization
- EBWCD & heating can assist plasma current startup & ramp-up
- NSTX provides an excellent testbed for evaluating EBW coupling, heating and CD physics at megawatt rf power levels

NSTX, $\beta_t = 42\%$, $\beta_{pol} = 1.6$ B_t = 0.34 T , I_p = 1 MA

Modeling Predicts Efficient Local Electron Heating & Off-Axis Ohkawa EBWCD in $\beta \sim 40\%$ NSTX Plasmas

G. Taylor, *et al ., Phys. Plasmas* **11**, 4733 (2004) R.W. Harvey & G. Taylor, to be published in *Phys. Plasmas* **12** (May 2005)

- Steerable mirror launcher aligns 1 MW rf power with high O-X-B coupling "window" (Two launchers for 2 MW)
- Switching between mirrors above and below midplane changes direction of EBW-driven current

Launcher

ST Plasma Edge Possesses Large Mirror Ratio & Geometric Expansion of Scrape-Off Layer (SOL)

Increased SOL Mirror Ratio (M_R) \Rightarrow Increased Footprint & Decreased Peak of Divertor Heat Flux

Factor of ~2 in
$$R_{div}$$
 and M_R
 \downarrow
Factor of ~3 in Δ_{div}
Why?

High & Low δ Divertor					
Bolometer Measurements					
R _{div} (m)	0.36	0.75			
SOL M _R	~ 3	~ 1.5			
$\Delta_{\sf div}$ (m)	~ 0.3	~ 0.12			

Plasma Edge Studies Reveal Turbulence and "Blobs" Important to Divertor Flux Scaling Studies

Solenoid Free Start-Up via Coaxial Helicity Injection & Outer Poloidal Field Coil Are Being Tested

Future ST Steps Are Estimated to Require Moderate Sizes to Make Key Advances toward DEMO

Device	NS	TX	NSST		CTF		DEMO
Mission	Proof of	Principle	Performance Extension		Energy Development, Component Testing		Practicality of Fusion Electricity
R (m)	0.8	85	~1.5		~1.2		~3
a (m)	0.6	65	~0.9		~0.8		~2
κ, δ	2.5,	0.8	~2.7, ~0.7		~3, ~0.5		~3.2, ~0.5
I _p (MA)	1.5	1	~5	~10	~9	~12	~25
B _T (T)	0.6	0.3	~1.1	~2.6	~2.1		~1.8
Pulse (s)	1	5	~50	~5	Steady state		Steady state
P _{fusion} (MW)	_		~10	~50	~77	~300	~3100
W _L (MW/m ²)	_		_		~1	~4	~4
Duty factor (%)	~0	.01	~0.01		~15	30	60
TFC; Solenoid	Multi-turn:	; Solenoid	Multi-turn; Solenoid		Single-turn; No-solen.		Single-turn; No-solen.

Long-Pulse H-Mode Plasmas Made Large Progress in Physics Basis for Next-Term ST Science Facilities

Well positioned to address the science of sustained high-performance plasmas.

Spherical Tokamak (ST) Offers Rich Plasma Science Opportunities and High Fusion Energy Potential

- Early MHD theory suggested ST could permit high β, confirmed recently by experiments
- ST research is highly collaborative worldwide
- ST enables cost-effective steps toward practical fusion energy
- Recent research identified new opportunities for addressing key plasma science issues using ST
 - Results have been very encouraging in many scientific topical areas

We welcome opportunities to answer questions, more show and tell