

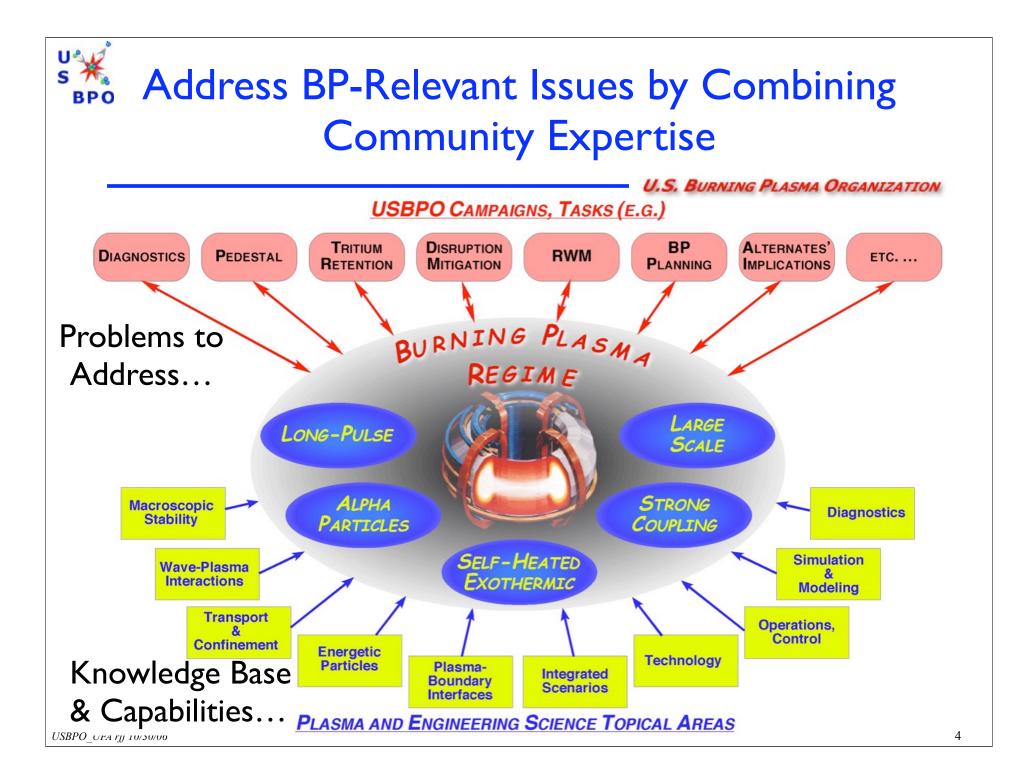
1

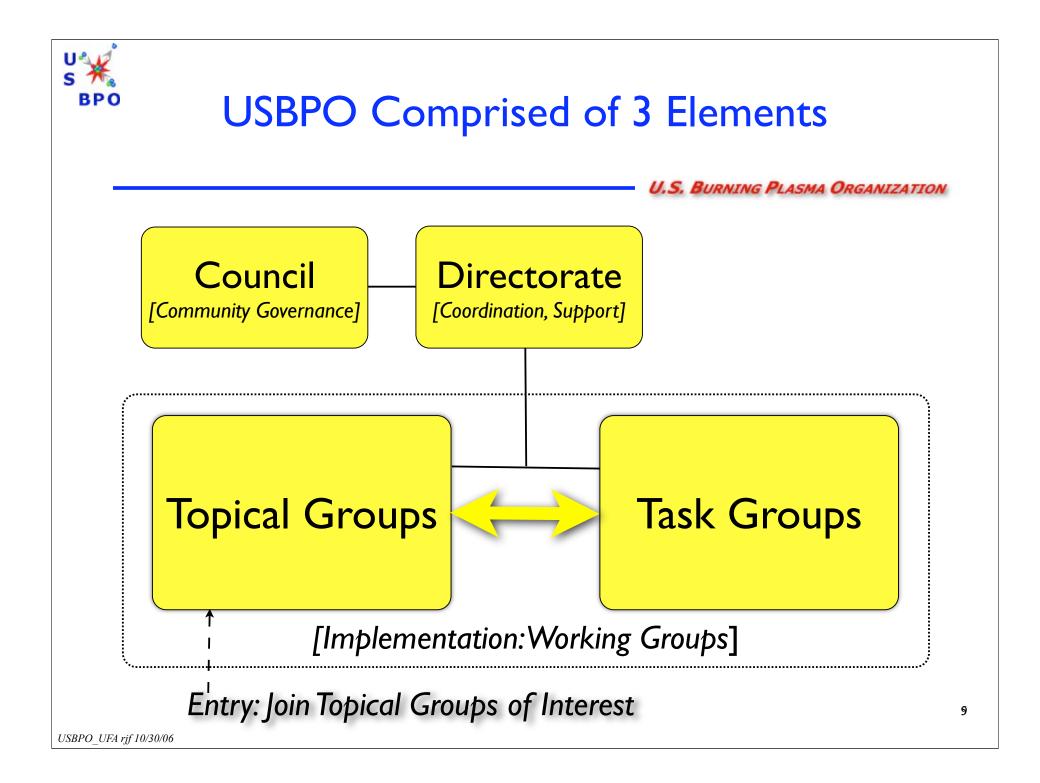
USBPO_UFA rjf 10/30/06

USBPO Formed to Organize BP Research Activities

U.S. BURNING PLASMA ORGANIZATION

Mission:


<u>Advance the scientific understanding</u> of burning plasmas and <u>ensure the greatest benefit</u> from a burning plasma experiment by <u>coordinating relevant</u> <u>U.S. fusion research</u> with b<u>road community</u> <u>participation</u>.

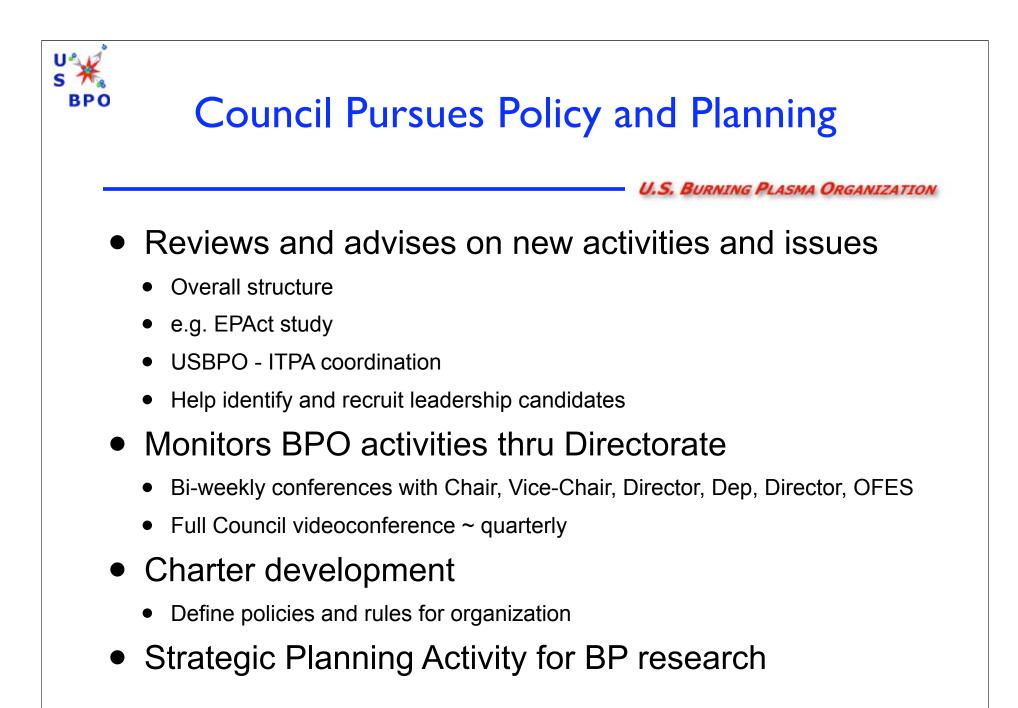

info in this talk: <u>http://www.burningplasma.org</u>

US Burning Plasma Organization: What's Happened Since Last UFA Meeting?

- Community discussions on what to do
 - Ist BP Workshop at ORNL in Dec, 2005
- Building the organization
 - Structural elements: Council, Topical Groups, etc.
 - Communications tools
- Addressing near-term research needs
 - First cut at a BP Research Plan: EPAct Task Group
 - ITER Physics Tasks
 - ITER Design Review Process
- Starting technical/research activities
 - Identifying and coordinating broader BP research tasks

Council Provides Community Governance

U.S. BURNING PLASMA ORGANIZATION


• Council: <u>Chair</u> = James VanDam (U. Texas) <u>Vice-Chair</u> = Amanda Hubbard (MIT)

Steven Cowley (UCLA) Richard Hawryluk (PPPL) Gerald Navratil (Col. U.) Craig Petty (GA) William Nevins (LLNL) George Tynan (UCSD) Steven Allen (LLNL) Earl Marmar (MIT) Martin Peng (ORNL) David Petti (INEEL) John Sarff (U. Wisc.) Michael Zarnstorff (PPPL)

ex-officio: Stanley Milora (IPO Chief Technologist, ORNL) Raymond Fonck (USBPO Dir.; IPO Chief Scientist)

OFES Program Managers: Erol Oktay (Science) Gene Nardella (Technology)

BPO

Directorate Manages USBPO Activities

U.S. BURNING PLASMA ORGANIZATION

• Directorate: <u>Director</u> = Raymond Fonck (UW)

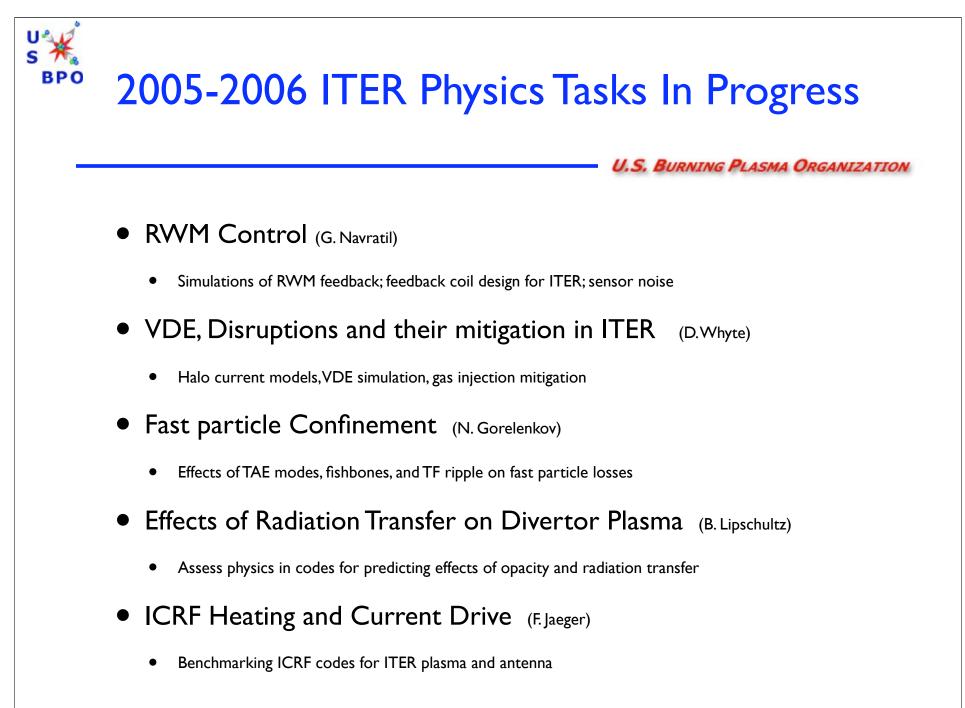
<u>Deputy Director</u> = Tony Taylor (GA)

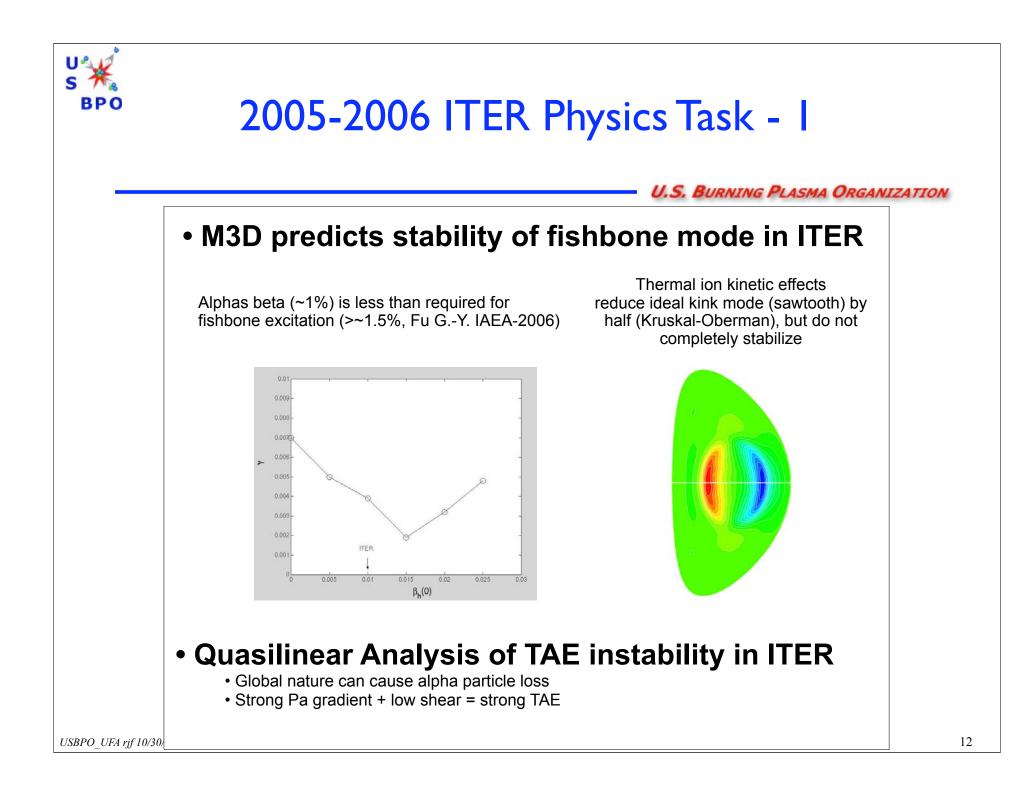
<u>Research Committee</u> = Topical Group Leaders

<u>Admin</u> = Joan Welc-Lepain (UW)

<u>Communications</u> = James Dekock (UW)

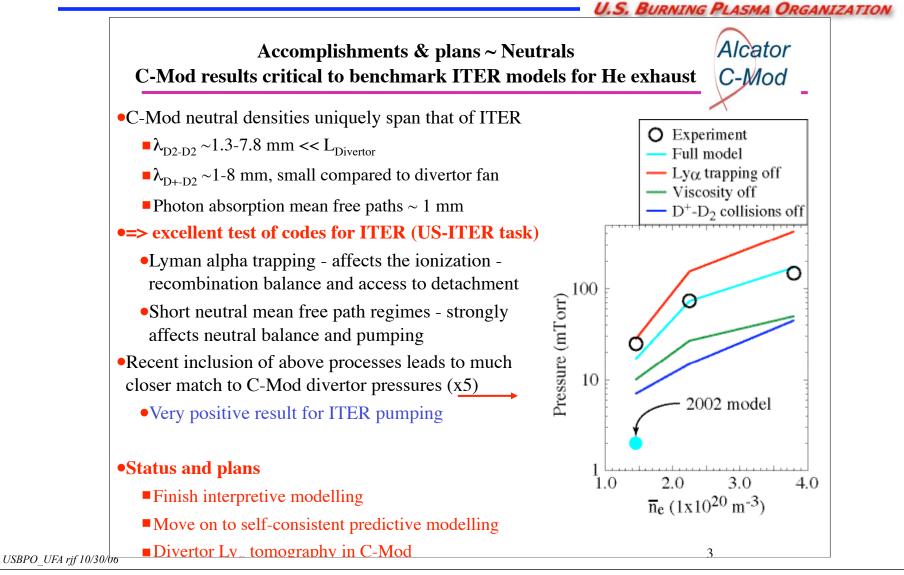
- Develops and guides daily USBPO activities
 - Topical and Task Groups: identify and manage BP research activities
 - Identifying and recruiting participants, with Council
 - Interfaces BPO with ITER Project Office and other orgs (e.g., ITPA)
 - Communication and information
 - Workshops, tech mtgs, FESAC, BPM, NRC, ITPA, etc.
 - Outreach and education


Topical Groups = Focus of BP Research


Topical Group	Leader	Deputy Leader
MHD, Macroscopic Plasma Physics	Jon Menard (PPPL)	Chris Hegna (UW)
Confinement and Transport	Paul Terry (UW)	Ed Doyle (UCLA)
Boundary	Dennis Whyte (MIT)	Tom Rognlien (LLNL)
Plasma-Wave Interactions	Cynthia Phillips (PPPL)	Steve Wukitch (MIT)
Energetic Particles	Raffi Nazikian (PPPL)	Bill Heidbrink (UCI)
Fusion Engineering Science	Nermin Uckan (ORNL)	Rich Nygren (SNL)
Modeling and Simulation	Don Batchelor (ORNL)	Jon Kinsey (Lehigh)
Operation and Control	Dave Humphreys (GA)	Dave Gates (PPPL)
Diagnostics	Rejean Boivin (GA)	Jim Terry (MIT), Steve Allen (LLNL)
Integrated Scenarios	Chuck Greenfield (GA)	Chuck Kessel (PPPL)

Research Committee Organizing Research Tasks

- Bi-weekly videoconference
 - Chaired by Deputy Director T. Taylor
- Various Tasks undertaken to date
 - Communications standards and tools
 - ITER CODAC
 - Burning Plasma issues identification
 - ITER Physics Tasks for 2005-2006
 - ITER Physics Tasks for 2006-2007
 - ITER Issue Card contributions
 - EPAct BP Planning activity



2005-2006 ITER Physics Task - 2

U٩

BPC

13

U.S. ITER Physics Tasks Proposed for 2007

U.S. BURNING PLASMA ORGANIZATION

- Used existing info to start
 - ITPA priorities; 2005-2006 ITER tasks; USIPO WBS needs; USBPO Workshop; etc.
- Topical Group leaders engaged community for ideas
 - Ongoing discussions on BPO forums
- 76 discrete tasks identified
- High-priority list of 14 advanced to USIPO
 - Used well-defined metrics for evaluation
- Working with USIPO to refine & discuss with ITER team
 - Led by N. Uckan, assisted by C. Greenfield and J. Menard
 - Identifying participants and work plans
 - Topical/Task groups will perform the chosen Tasks

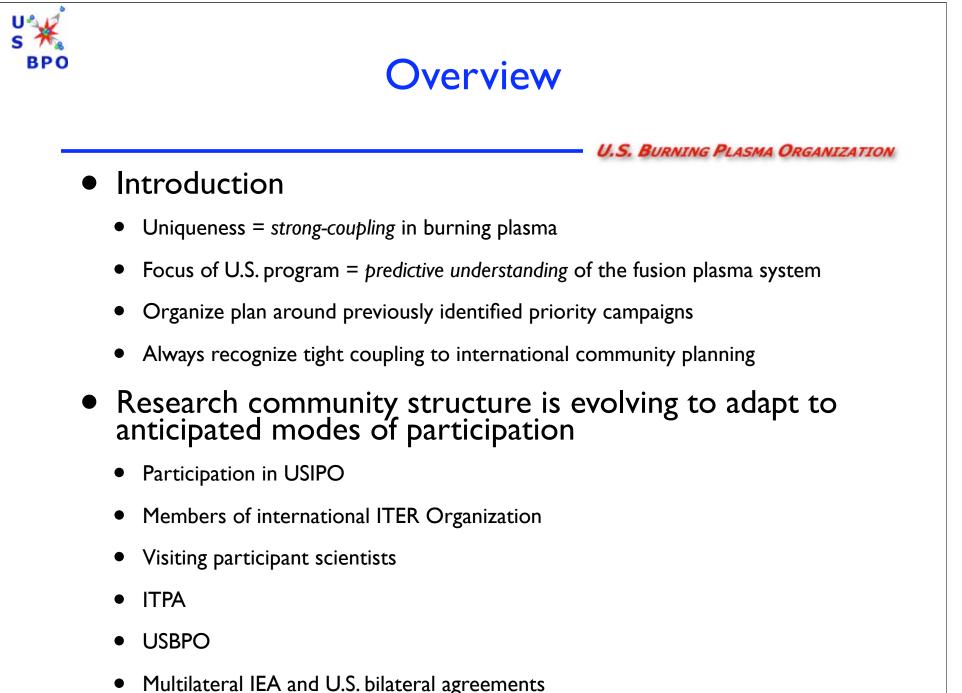
BPO

Final List of Recommended ITER Physics Tasks

- Active coil system for ELM suppression and RWM stabilization
- ITER disruption mitigation system design and physics understanding
- Tritium retention and H/D/T control
- Requirements for stabilization of (3,2) and (2,1) NTMs
- Limitations to startup flexibility for advanced scenarios
- ELM mitigation
- ICRF antenna performance and coupling studies

 Critical assessment of heating and current drive mix on ITER and impact on achievable scenarios

- Review measurement requirements related to US diagnostic packages
- Evaluate the feasibility of lost and confined fast ion diagnostic systems for ITER
- ITER CODAC architecture design
- ICRF heating and current drive scenarios (time-independent)
- Development of improved pedestal and L-H transition predictive capabilities and impact on ITER design and performance.
- Locked-modes and error field correction specification


ITER Issue Card Process: Community Participation in the ITER Design Review

- Identification of Issues in ITER reference design
 - On-going ITER design review process see Town Meeting Tues, Night
- Sub-comm extracted 1st set from 14 priority tasks
 - Some additions from Res Comm and sifting for design impact
 - Initial list of 11 forwarded to USIPO for discussion
- Initial group advanced forward by USIPO
 - Refine and expand as feedback obtained
- Topical Groups engaged to ID more as needed
 - Reaching out to community membership

Developing a BP/ITER Research Plan

- Energy Policy Act of July, 2005 called for a Plan for US Participation in ITER
 - The U.S. research agenda for ITER
 - Methods to evaluate whether ITER is promoting progress toward making fusion a reliable and affordable source of power
 - Description of how work at ITER will relate to other elements of US fusion program.
- DoE/OFES asked USBPO to help develop this Plan
 - Consultation with FESAC
- EPAct Task Group formed to produce this
 - Sent to OFES in early June 2006; available on BPO web site

USBPO_UFA rjf 10/30/06

(i) The U.S. research agenda for ITER: Aligned with Science Campaigns

U.S. BURNING PLASMA ORGANIZATION

- Specific long-term goals require near-term preparatory research
 - Determines the near-term agenda for U.S. program over next decade or so
 - A range of topics identified
 - Plan backwards from goals...
- Examples:

		Goal on ITER:	Stabilize pressure-limiting instabilities
•	Macroscopic Plasma Physics:	ITER Time Frame:	Modest gain Non-inductive Phase
	-	Preparatory Research:	Define suitable control coil systems for ITER

	Goal on ITER:	Understand instabilities driven by alpha-particles
	ITER Time Frame:	High gain DT Phase
 Waves and Energetic Particles 	•	Modest gain Non-inductive Phase
	Preparatory Research:	Investigate energetic particle instabilities
		Develop alpha particle diagnostics

USBPO_UFA rjf 10/30/06

(i) The U.S. research agenda for ITER: Specific Tasks for Each Campaign

200	05 20	10 20	15 20	20 20	25 20	30 2035
Phases of ITER Development Fusion Science Campaigns	DESIGN SUPPORT	PRE-OPERATIONS	COMMISSIONING First Plasma	HIGH GAIN DT	MODEST GAIN DT LONG FUS PULSE, NON-INDUCTIVE TES	
The Integrated Burning Plasma System		stēady-state scenarios for ITER velop integrated plasma mode		gain long pulses gair in ITER cap Study alpha h Establish integrated m	ieve modest Optimize gain steady-state ability plasmas eating effects odel on ITER	High duty cycle operation in burning plasma
	Develop integrated p			Control complex, burn		
Macroscopic Plasma	Design suppression coils for pressure limiting instabilities	Develop disruption avoidance and mitigatio methods	Mitigate disruptions on in ITER		Stabilize pressure limiting instabilities in ITER	
Physics		Specify RF systems to stabilize confinement limiting instabilities		s confinement nstabilities		
	Resolve RF a microwave is	sues of H&CD	pgrade systems	Achieve 10 current dr	00% non-inductive ve in ITER	
Waves and Energetic Particles	Investigate energetic		particle diagnostics	Understand instabilities driv	en by alpha particles	
	Understand electron	heat transport		Understand transport in the	burning plasma regime	
Multi-Scale Transport Physics		rbulence diagnostics for ITEF	1			
Transport inysics	Decide how to spin t Understan	he ITER plasma d transport barriers		Control how the ITER plasm Use transport be to achieve high	arrier physics	
	Understand edge peo	destal physics	Achieve a sufficie	nt edge pedestal for high gair		
Plasma-Boundary Interface	Identify approaches the impact of edge in			edge instability ssion in ITER		
internoe	Understand in diverto	role of density or physics	Understand how	to project edge physics		
Fusion Engineering Science	Develop advanced fu	lanket module program leling for ITER cting magnet construction	Provide central fueling in I	loy, operate, study test blank ER e of power-plant scale magne		ory Operate very long pulses for blanket test

(ii) Methods to evaluate whether ITER is promoting progress toward making fusion a reliable and affordable source of power

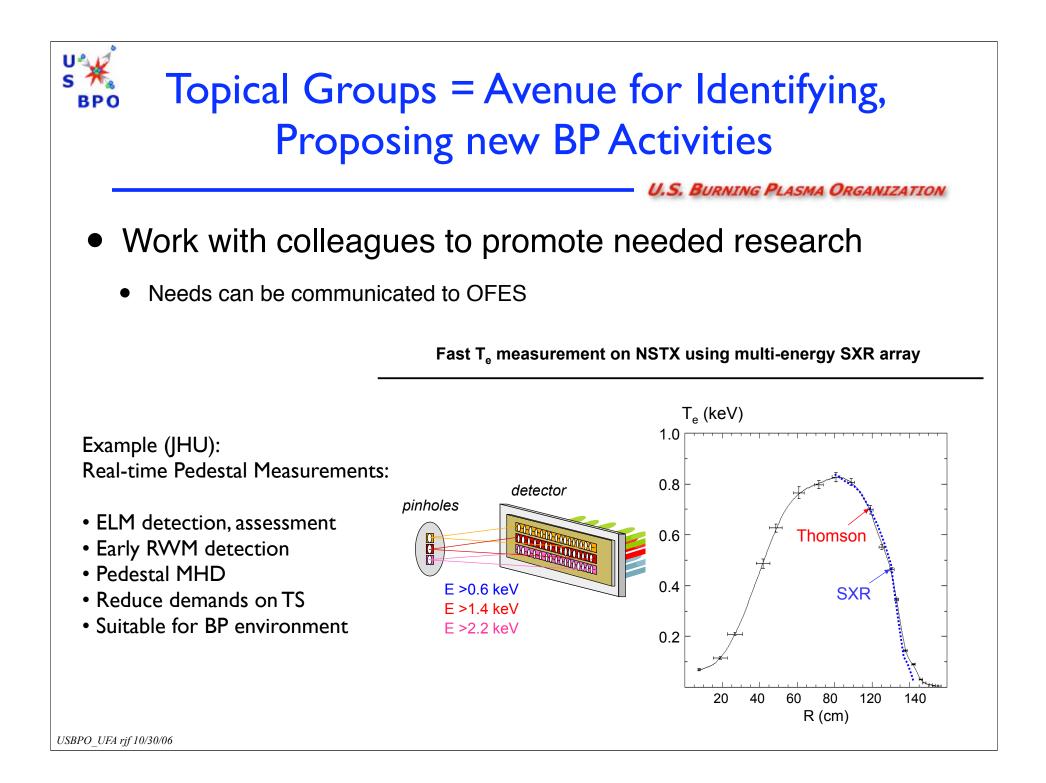
- Metric Class I: Scientific Progress
 - Focus of U.S. program = development of underlying science and a <u>predictive</u> <u>understanding</u> of the fusion plasma system
 - Comparison of predicted and measured properties of plasma
 - Experimental validation of theory and simulations
 - e.g., explore predicted stability limits once in BP regime
 - Use of knowledge for controlling and extending plasma performance
- Metric Class II: Energy and Technology Progress
 - Performance goals: e.g. fusion power, gain, pulse length, etc.
 - Secondary to scientific metrics, but easier to define need to be careful!

(iii) Description of how work at ITER will relate to other elements of the U.S. fusion program.

- Follow NRC BPAC report: goals for attractive fusion energy Maximize the plasma pressure Maximize the plasma energy confinement Minimize the power needed for sustainment Simplify and increase reliability
- A portfolio approach used to develop the predictive understanding of magnetic confinement to achieve these goals
 - Experiment in four leading categories
 - Theory and simulation
 - Fusion engineering science and tools
 - Tests of emerging concepts
- Relation to ITER and burning plasma research in an integrated fusion program
 - Support
 - Complement
 - Benefit from

Future Directions in Developing an Overall Plan for ITER Participation

- Further develop specific goals and timescales
 - Long-term BP Planning Activity in USBPO Council activity
 - Work with partners through ITPA, USIPO, and ITER for U.S. roles
- Set clear priorities among the tasks
 - As tasks are defined, confront prioritization
 - Lead to suggest BP priorities in near-term domestic research
- Work with FESAC planning activity
 - Address the ITER/BP participation part of the U.S. program


Getting Involved from Universities

U.S. BURNING PLASMA ORGANIZATION

- Find out what's going on
 - Sign up for membership at: <u>http://www.burningplasma.org</u>/
 - e-News, Bulletin Boards, e-mail distributions, TG meetings and discussions
 - Suggest new approaches for communications?

• Participate in Topical Group Discussions and Tasks

- TG videoconferences and satellite meetings (e.g. several here during week)
- Execute research tasks
- Propose new activities...
- Move to leadership positions in areas of interest
- Also: ITER Positions posted at http://www.usiter.org/
 - National and international

What's Going on This Week & Near-Term

U.S. BURNING PLASMA ORGANIZATION

Topical Group meetings of interested community members

• MHD

US

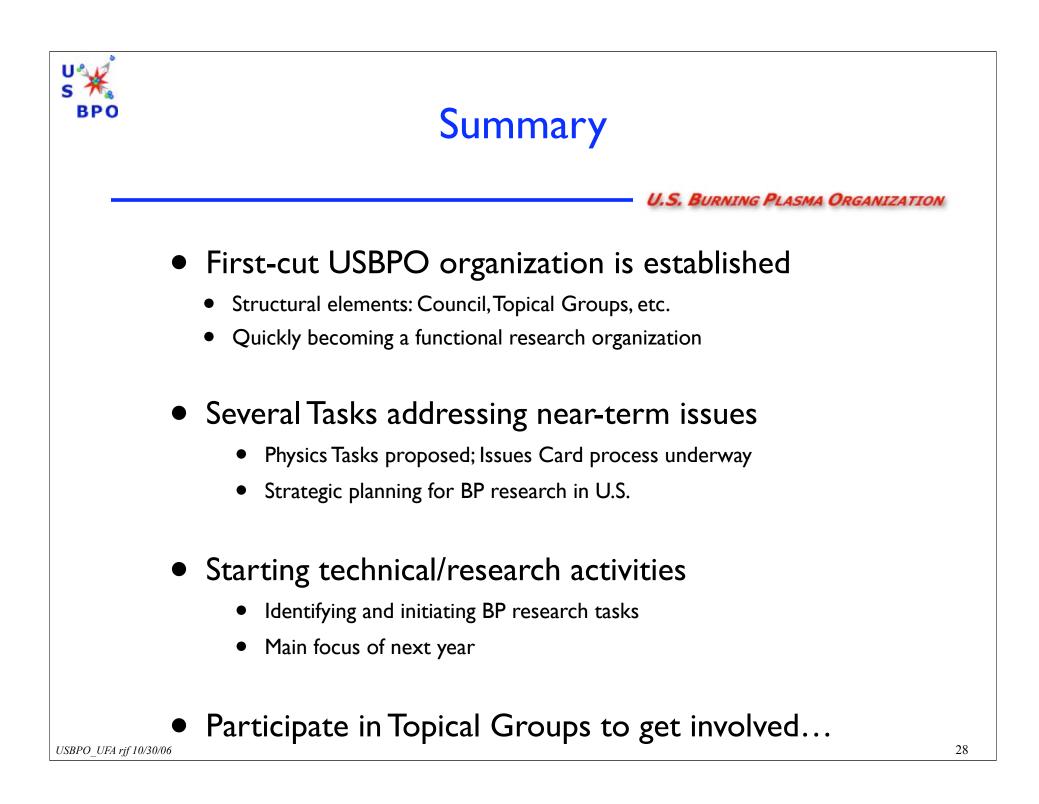
BPO

- Integrated Scenarios
- Modeling & Simulation Batchelor, Kinsey
- Boundary
- Plasma-Wave
- Transport / Confine
- Diagnostics
- Control and Ops

- Greenfield, Kessel Weds15:30 - Batchelor, Kinsey Tues 16:30
- Whyte, Rognlien Tues after Town Mtg
- Philips, Wukitch Tues after Town Mtg
- Terry, Doyle

- Menard, Hegna

- Boivin, Terry, Allen Feb. 6-8
- Humphreys, Gates TBD (see web site)


Tues 17:30

Tues after Town Mtg

- Council Meeting (Weds 12:00)
 - Review of BPO activities
 - Charter development
 - Search Committee for new Director nominees

Rm 304, Marriot TBD Tables in poster hall ITER Town Mtg Rm ITER Town Mtg Rm ITER Town Mtg Rm Workshop @ GA Videoconference

