					11/20/2001, Feb 13, 2003 update by RJT, Feb 15 DMM
				REA	
			DESIGN PT – PHYSI	CS & TRADE STUDIES	
Schit #	chit #	Reviewer	Reviewer Comment or Suggestion	FIRE Team Comment	FIRE Team Action by
PTS1	1	R. Parker		The 2002 Snowmass Fusion study reviewed the FIRE confinement projections and concluded that: "There is confidence that ITER and FIRE will achieve burning plasma performance in H-mode based on an extensive experimental database." "ITER and FIRE scenarios are based on standard ELMing H-mode and are reasonable extrapolations from the existing database."	Meade,Schultz
PTS2	4	C.Bushnell		In October, 01, the wedged configuration was selected for the baseline. A comparative overview may be found in the FY01 Engineering Report.	Meade, Thome, Heitzenroeder
PTS3	14	R. Parker	The number of full power shots is limited by radiation damage of insulators. More shielding between plasma and inner base.	see Schit PTS3	Meade, Thome, Heitzenroeder
PTS3	30	J. Irby & A. Pizzuto	Too few full performance shots. Increase shielding in critical areas Improve insulation • consider more DD operation	see Schit PTS3	Meade, Wesley
	provide fl	exibility for advanced		tent to satisfy the FIRE mission, and also noted that an increased allowe the has encouraged the development of new insulators by CTD, and is in the second	
			R	&D	
RD1	2	R. Parker	More R&D needs to be earmarked for diagnostics.	see Schit RD1	Young
RD1	29	P.Mioduszewski	There should be some R&D funding for diagnostics, especially due to the harsh neutron environment and unique geometry. It is generic, but who will do it if not F.IR.E.?	see Schit RD1	Young
	SChit RD	1: An R&D plan has b	been outlined by K. Young in a memo, "FIRE Diagnostics Research &	& Development Plan", Aug 15, 2001	
RD2	9	F.Puhn	R&D is required to verify the design concept. Cost of R&D is a serious concern. Perform a complete survey of previous R&D to identify data and design solutions that can cut cost of FIRE R&D. ITER and Ignitor R&D seem most applicable to FIRE. Other fusion program R&D should be looked at.	see Schit RD2	Heitzenroeder, Thome

RD2	12	C.Bushnell	The use of all OFHC copper is a simplifying move for R&D and downstream power and cooling costs etc. etc The allowable implies 50₂% cold work - Concern is this possible for plates this thick and this size? Get on with immediate R&D to demonstrate! - Feed back data to design criteria!	see Schit RD2	Thome, Heitzenroeder, Titus
RD2	28	C.Bushnell	Will the copper (101-102) embrittle with radiation, will it creep at the stress levels indicated? Put these problems behind with immediate investigation / R&D!	see Schit RD2	Driemeyer, Titus, Zinkel
			configuration has been selected for the baseline. A comparative overvie ne properties required in the sizes needed for FIRE.	ew may be found in the FY01 Engineering Report. R&D plans are being	evaluated to verify the
RD3	7	A. Pizzuto	It is urgent to confirm the design assumptions. CuBe and insulator properties not yet well assessed. Radiation resistance of insulator the main issue. Tests of: - Cu creep at R.T Qualification of the impregnation process compatible with copper properties (curing T less than 200°C) CuBe and Cu of plate production in relevant thickness and dimension.	see Schit RD3	Action: Thome, Heitzenroeder
RD3	15	C.Bushnell	The R&D level requires materials for insulation on the forefront of development. Get on with immediate R&D of available materials.	see Schit RD3	Meade, Thome, Heitzenroeder,Sawan
RD3	27	F.Puhn	Radiation damage to insulator seems to limit total useful operating life. Selection of suitable insulation material is critical to getting full value from machine. Presently no insulation with supporting radiation damage data has been identified. As highest priority select candidate insulation materials and perform irradiation and testing as required. Make final selection. This task may take a long time so it should be started as soon as possible. Also investigate effect of local shielding (W) on VV inside wall.		Schultz, Titus
	resistanc	e. Promising new		indicates that existing polyimide sheets may have adequate compressive cussion of the design, data base, and necessary tests is given in NSO No Insulation Development, Rev. 1" September 7, 2001	
RD4	24	C.Bushnell	The choice of castings could be a major cost driver if found not to be appropriate! Immediate R&D to prove one way or the other!	Information on castings being considered for NCSX should provide initial information. R&D is probably not possible this FY due to budget limitations.	Heitzenroeder, Thome
		1	PF	Ċ's	
PFC1	3	lrby	Tiles are to be replaced 2-3 times during lifetime of machine. How will you know when to replace them. Will machine performance degrade slowly before changes are made. Make sure you have the diagnostics needed to monitor erosion.	Not critical to the conceptual design process. There are at least two good ideas of how to monitor the erosion without access to the vessel (IR and markers). In-vessel inspection may be enough also.	Ulrickson
PFC2	46	Pizzuto	Divertor max. temperature in CuCrZr seems to exceed 550	see Schit PFC2	Ulrickson, Driemeyer
PFC2	47	C.Bushnell	Baffle plates, first wall and inner divertor are in the minimal stage of P.C. design. Work on design immediately!	Work on the baffle and inner divertor design is part of FY03 effort. This will be completed by 2003. The first wall design is not as high priority and will be done after the baffle and inner divertor work.	Ulrickson, Driemeyer

PFC2	50	F.Puhn,GA	Thermal gradient in divertor modules can cause excessive stress, distortion, and creep. These effects have not been assessed. Continue analysis to superimpose thermal loads with electromagnetic loads. Investigate creep behavior in copper.	see Schit PFC2	Ulrickson, Driemeyer
PFC2	51	S. Majumdar	Thermal stress analysis of divertor structure is incomplete. Conduct thermal stress analysis and fatigue evaluation including creep effect. Also, need to satisfy design criteria for combined load effect, e.g., gravity + thermal + disruption etc.	see Schit PFC2	Ulrickson, Driemeyer
PFC2	52	A. Pizzuto	Divertor thermal stresses: Divertor fingers are highly constrained so thermal stress could be very high.	see Schit PFC2	Ulrickson, Driemeyer
PFC2	54	C.Bushnell	Outer divertor module needs much more work - on disruption loads/material and on copper finish that has high thermal stress. Work this soon with design effort and R&D as required!	Disruption analysis is in progress. This is a high priority activity. We will complete the analysis for the VDE, Radial inward and stationary disruption for the 2.0m machine in FY02. Scaling analyses will be used to estimate the disruption loads for the 2.14m machine.	Ulrickson, Driemeyer
				Iteration 2 of thermal stress analysis is examining the possibility of modulated and the possibility of modulation and degress of freedom will be added. This is a high priority task for FY0:	
PFC3	48	J. Irby	Can the disruptions really be predicted 30-50 ms ahead of time in FIRE? I don't think any engineering decisions should be made that depend on predictions. Reduce forces on plates by reducing size.	FIRE will follow disruption mitigation activities on current tokamaks - DIIID's massive gas puffs show promise that they can control energy deposition and current decay. This is not a conceptual design issue.	Ulrickson
PFC4	49	J. Irby	Several kA/cm2 vacuum contacts are very risky. I suggest some other approach be found to deal with the toroidal disruption currents.	Only a backup if disruption forces prove to be too high; highly likely this will not be necessary.	Ulrickson, Driemeyer
PFC5	53	A. Pizzuto	R.H Module to be refurbished is too heavy. Boom with limited operations area. Very long operation and complex out of vessel maintenance (3 full divertor plate refurbishments)	see Schit PFC5	Ulrickson, Driemeyer, Burgess
PFC5	57	J. Irby	Size of divertor plates should be reduced.	see Schit PFC5	Ulrickson, Driemeyer
PFC5	55	F.Puhn	Size of divertor module drives the design in several critical areas: •Weight of module impacts boom design and R&D requirements. •Size of module requires cut-outs in TF coil which creates critical section in coil and restricted space for leads. •Disruption loads are very high on large divertor module. Suggest changing from 16 to 32 divertor modules.	see Schit PFC5; Disruption loads are being assessed. If they are too high, other options exist.	Ulrickson, Driemeyer
			need to change. Present module size OK for remote handling and c will be reviewed again for the 2.14m machine.	livertor mounting. Water connections would be much more complex with	a change to more, but
PFC6	56	A. Pizzuto	Divertor - The use of inconel back plates for fingers could have a big impact for waste and activation points of view.	Not expected to be a problem with our low fluence. However, if future stress analyses indicate SS can be used, Inconel will be eliminated.	Ulrickson, Driemeyer, Sawan
PFC7	58	P. Mioduszewski	Need comparative study of single-versus double null configuration with respect to: connection length, temperature gradient, power disposition pattern.	see Schit PFC7	Ulrickson, Rognlien

PFC7	59	P. Mioduszewski	Detached divertor operation needs to be studied with respect	see Schit PFC7	Ulrickson - Rognlien,
			to: -plasma performance -He exhaust -Zeff -neutrals control		Brooks
PFC7	60	P. Mioduszewski	It is not obvious that the short connection lengths in the SOL can support the need temperature gradients between divertor and separatrix/pedestal. What pedestal temperature is needed to achieve the desired H-mode confinement?	see Schit PFC7; Pedestal temperature required must be specified by physics.	Meade
PFC7	61	P. Mioduszewski	CX - fluxes at the divertor entrance are usually fairly large. Sputtering of Be from the passive plate could lead to tungsten sputtering from the divertor surface and lead to unacceptable W- concentration in the plasma. Need plasma edge/neutrals modeling to evaluate erosion of the passive plates.	see Schit PFC7	Ulrickson/Brooks
PFC7	62	P. Mioduszewski	Need to evaluate ranges for divertor loads; discussed was 80/20, should also look at performance of e.g. 70/30, 90/10 etc. The given loads are already at the limit. Partially detached.	see Schit PFC7	Ulrickson, Wesley, Rognlien
	ITER and addition,	d FIRE. Experience of the primary limit to	n JT-60U and ASDEX_U have shown reduced Elm size for near doub exploitation of AT modes on FIRE or ITER is the ability to remove th DL will be worked out by Ulrickson and Rognlien.	er deposition in the divertor due to Elms was identified at Snowmass as a le null Double null experiments in support of FIRE have been proposed fo ne exhaust power at the high power densities produced by AT modes.	r both C-Mod and DIII-D. In
	·Stres	s Analysis			
TPS1	5	A. Pizzuto	Out of plane loads during disruption not yet considered. Could be the determining stress as far as shear is concerned	As measured in C-Mod and based on a transient electromagnetic disruption analysis of FIRE, the vessel shields the coils from any significant loading. See Memo NSO N0: WBS1.3.5_100501_TF_Disrupt_PHT.doc	Titus
TPS2	17	J. Irby	Compression ring needs more R&D Allow time for study of non-	see Schit TPS2	T 11
			metallic structure. Increase R&D in this activity.		Titus
TPS2	18	C.Bushnell	metallic structure. Increase R&D in this activity. The loading rings (stiffness) and jack design need to be settled. Apply immediate design R&D as required.	see Schit TPS2	Titus
TPS2 TPS2	18	C.Bushnell F.Puhn	The loading rings (stiffness) and jack design need to be settled.		
	19 SChit TF of non-m the purp R&D on	F.Puhn S2:The compliance netalics would have to ose, and it is not cle this will be delayed	The loading rings (stiffness) and jack design need to be settled. Apply immediate design R&D as required. Preload ring requires high strength and insulating breaks. To carry hoop load across insulating break requires special features, presently not defined. Consider use of a non-metallic filament wound preload ring. Stiffness is 5 to 10 times lower than metal and this results in less change in preload during temperature excursions. of non-metalics would probably make the opposed jack wedge syste o be simulated and creep of the non-metalics needs to be quantified ar if there is a substantial cost or assembly advantage for a non-met	see Schit TPS2	Titus Titus Titus Titus Imal contraction properties Iem. The steel ring serves I will be considered, but

TPS3	13	R. Parker	Copper embrittles at very low dpa and could lead to degradation of performance at or near end-of-life fluence. Carefully check data or Cu and BeCu if data exists. If data is inadequate or inconclusive, plan to explore in R&D program.	see Schit TPS3	Sawan,Nelson,Zinkle
TPS3	32	S. Majumdar	(1) Treatment of low ductility material in the FIRE design criteria is absent. (2) Treatment of fatigue, creep/fatigue in the FIRE design criteria is incomplete. (1) First, conduct literature survey on low fluence embrittlement of copper/copper alloys. If embrittlement is a concern, use design rules from ITER structural design criteria as a starting point. (2) Use fatigue and creep- fatigue rules of ASME code or ITER structural design criteria for components like divertor,first wall, etc.		Titus, Zatz
	are very by Sawa and the a • Data ou • A smal • Therma	low, some effects on n, Zinkle, & Nelson w available data on Cu n loss of ductility of E I, relatively inexpensi al creep data for CuC	physical and mechanical properties might occur. We reviewed the ras issued on 8/9/01 discussing in detail the status of existing data a alloys, we identified the R&D needs as follows: 3eCu (or OFHC) at temperatures between 80 and 373 K with dose we irradiation program is needed to measure fatigue, fracture toug	r the FIRE baseline design. The dpa values are very low (< 0.04 dpa). A numerous studies performed over the past ~8 years as part of the ITEF and the relevance to FIRE design. Based on the irradiation levels and op s < 0.01 dpa. hness and fatigue crack growth rate behavior in high-strength, high-con ation creep measurements on Cu alloys for the low doses proposed in R	R&D program. A memo eration conditions in FIRE nductivity copper alloys.
TPS4	6	A. Pizzuto	12 T Operation. Baseline solution must have sufficient engineering margin to allow operation at maximum performance. ME=1.5 should be achieved.	see Schit TPS4	Titus
TPS4	25	S.Majumdar		see Schit TPS4	Zatz, Titus Section in FY01 rpt
TPS4	31	S. Majumdar	Inelastic analysis rules in FIRE design criteria at present. If elastic analysis rules cannot be satisfied use either limit analysis rule (with flat top stress-strain curve with 1.5 SM as yield) of ISDC and show collapse load >3/2 design load or use inelastic analysis rule of ITER structural design criteria and satisfy strain limits.	see Schit TPS4	Zatz, Titus
	and 1/2 and a lest criteria d	ult -rather than the As ss conservative appro ocuments, additional	SME 1/3 Ult, has been discussed many times, and at least for magi pach is acceptable for a component with limited public safety conce	magnet criteria. The issue of the non-conservative derivation of Sm bein nets, has been accepted. One rationale is that, at present, a tokamak is rns. The present design criteria provides a margin of 2.0 against failure rre is some uncertainty in the physics design point for the machine. We	an experimental device . Given the history of the

TPS5	33	S. Majumdar	Bucked & wedged design is justified by highly complex, nonlinear, contact stress analysis. Need to benchmark analysis technique by tests.	Both the Wedged and Bucked and Wedged configurations use the same non-linear analysis tools- gaps, plasticity etc. The predictive value of large, complex analysis models has been an issue and probably will remain an issue as long as we use state of the art analysis tools, that are substantially more advanced than the tools that were used to model the present operating tokamaks.Some benchmarks and qualification methods exist, eg- see memo# WBS1.3.5_101201_TF_Disrupt_PHT	Titus
	·Conf	iguration			
TPS6	16	J. Irby	B&W design: can you take it apart? Bucking arrangement should allow removal of CS w/o difficulty. Failure scenarios should be carefully considered.	The CS for both Wedged and B&W concepts needs to disconnect the case assembly for PF1 and 2 lower for the CS to be removed without disassembly of the TF. Passing LN2 through the CS cooling channels with the TF at room temp allows removal of the CS for the more tightly fit B&W configuration. The B&W approach is not the present baseline so this is not an issue.	Titus,Brown
TPS7	21	R. Parker	Cooling of TF is too slow. Improve cooling by adding cooling of inner base of magnet.	see Schhit TPS7	Titus, Meade, Wesley, Brown
TPS7	37	J. Irby	Between shot time too long @ 400 shots/year 7-8 years to get through the 3000 shots. Look at cooling both sides of TF. Look at cooling between TF & CS	see Schit TPS7	Titus, Meade
TPS8				sides as paret of the design modification for 2.14m. The pulse repetitio that produced 2500 shots per year which is in the range of today's toka see Schit TPS8	
TPS8	22	J. Irby	Connections to magnets need to be analyzed/designed with high priority. Material - work hardened. Focus on these issues as soon as possible.	see Schit TPS8	Titus,Brown
TPS8	23	F.Puhn	TF Coil lead is located in congested position next to midplane ports. Carrying TF coil load may require a thicker section adjacent to lead. Consider relocating TF coil leads to a position between ports to allow more space for structure.	see Schit TPS8	Brown, Titus See 22
			igh field region. The present lead and manifold design is considered	to the gaseous nitrogen atmosphere within the cryostat. Our plan is to for appropriate for this stage of design. More detail will be generated as the	
				AINTENANCE	
RM1	8	R. Parker	A single boom is risky since it could malfunction in machine or be unavailable when needed. Also, maintenance time (e.g., to replace divertor or substantial fraction of FW) would be needlessly long. Two booms should be part of baseline design.	see Schit RM1	Burgess

RM1	35	F.Puhn	No rescue capability is identified for remote handling boom. Suggest requiring a second boom which has rescue capability. The training boom might be used in an emergency if another training boom can be obtained in a reasonable time.	see Schit RM1	Burgess
	SChit R	M1: The training/d	evelopment boom is planned for back-up service.		
			SCHEDUL	E & COSTS	
SC1	10	C.Bushnell	In manufacturing, time is money! Could \$\$ be reduced by building it faster? By front loading in program more R&D and/or prototype? Trade offs or\$\$ need to be looked at soon.	Project costs could, indeed, be reduced by front loading R&D and compressing the construction schedule. The present strategy is based on an assumption for the fastest implementation schedule based on likely fiscal limitations. Our plan is to obtain feedback from the fusion community and DOE, and then revise the plan. Front loading R&D has many benefits, and we are persuing this possibility.	Simmons, Thome, 1 Heitzenroeder
		•	VV & C	RYOSTAT	
VVC1	11	C.Bushnell	The purpose of the cryostat needs a crisp definition! Then we will know if the costs are correct. Define - Design - and Cost.	The requirements for the cryostat have been updated and can be found in the FY01 report.	Nelson,Petti
VVC2	34	J. Irby	What happens if the vacuum vessel goes down to LN2 temps? What happens to outer cooling lines?	see Schit VVC4	Nelson
VVC3	38	J. Irby	What are the vacuum properties of the Cu-Ss wall composite? •trapped volume •impurities. Inspection techniques. Prototype tests	see Schit VVC4	Nelson, Driemeyer
VVC4	39	J. Irby	Pumping speed of cryopump @ 20 u\pT much too low for density control (Base p). Look at relocation of pump. Larger ports.	see Schit VVC4	Fisher, Gouge, Ulrickson
	to enable	e faster pumpdow	n to base pressure prior to plasma operations or during vessel bakeou	ucular pump attached to a large, high conductance, mid-plane port and o ut. This addition will provide a minimum pumping speed of 2000 l/s in th ts, but close during a shot to avoid streaming and neutron activation o	ne molecular flow region.
VVC5	40	S. Majumdar	Vacuum vessel stress analyses have been conducted for thermal, gravity, etc. Disruption analysis is incomplete. Design criteria limits for combined loading effects have to be satisfied. Fatigue evaluation needed for regions of stress concentration. What are the stress limits for Cu/SS composite structure? Sufficient to show that primary stress limits can be satisfied and without any help from Cu.	see Schit VVC5	Nelson
VVC5	4 1	A. Pizzuto	Vacuum Vessel - The stress analysis has to be also considering coherent disruption scenario.	see Schit VVC5	Nelson
VVC5	42	F.Puhn	Vacuum Vessel and divertor design/analysis not complete. Stresses exceed allowables in some regions. Complete redesign and stress analysis. Include thermal stress and all loading conditions. Include thermal stress on divertor. Apply electromagnetic loading on VV.	see Schit VVC5	Ulrickson, Nelson

VVC5	43	F.Puhn	Eddy current analysis does not include cut-outs for ports. Thus the poloidal current flow in port edges is not calculated. This current crosses toroidal field and produces loads on port walls. Perform more detailed eddy current analysis to include ports. Stress analyze ports for disruptions loads.	see Schit VVC5 Nelson, Ulrickson	
	SChit VV and FY04		alyses have begun and are considered appropriate for a pre-conceptua	I design phase. Further analyses are essential as indicated. This will be pursued further in FY03	
VVC6	44	F.Puhn	Vacuum vessel supports not fully analyzed for side loads. Load path relies on bending of slender tie rod. Shock loads or maldistribution will occur unless precise fit-up is ensured. Space and access is very restricted. Complete VV support design and analysis. As alternate concept consider supports on midplane ports using "watts linkage" or rollers. Watts lineage to ensure straight-line motion. Can place other linkages on top or bottom of ports to react side loads.	Support analyses have begun and are considered appropriate for a pre- conceptual design phase. Further analyses are essential as indicated. This will be pursued further in FY03 and FY04.	
VVC7	45	F.Puhn	No obvious means to access fasteners connecting baffle modules to vacuum vessel. Remote handling requires large access holes and visibility. Design concept for remote assembly/disassembly of baffle modules. Analyze impact of cut- outs when subjected to peak heat loads.	Access and remote handling analyses have begun and are considered appropriate for a pre-conceptual design phase. Further analyses are essential as indicated. This will be pursued further in FY03 and FY04.	
			NEUTE	RONICS	
NI	36	F.Puhn	Safety implications of activated nitrogen inside the cryostat is not addressed. This may be a problem due to neutron streaming. Perform 3D neutronics analysis. Address safety implications. Include off-normal events.	See FY01 Engineering report. Based on 1-D calculations, the total 13N Sawan production after each D-T pulse is only 0.9 Ci with only 1 micro Ci of 14C. These are generated mostly in the space between the IB magnet and the IB VV. Due to larger shielding, activity is about two orders of magnitude lower on OB side. Streaming is not expected to increase the OB activation by more than two orders of magnitude. Hence, streaming may double the estimated total activity in Nitrogen gas which remains very small. 3-D calculations are planned as the design details become available. In addition off-normal events will be analyzed as the design progresses.	

N2	Y.Gohar	All the analyses and the results are produced with a one- dimensional toroidal model without including safety factors to account for engineering details, model assumptions, and other uncertainties.	Experience with toroidal 1-D calculations and 3-D Sawan calculations shows that peak nuclear parameters at midplane close to FW are overestimated by up to a factor of 1.6 when 1-D calculations are used. Since the worst conditions occur at midplane in FW/tiles and at front of lightly shielded (<10 cm) IB leg of TF coil, there is no need to increase these peak nuclear parameters by a safety factor. Engineering details, model assumptions and other uncertainties are not expected to counterbalance the overestimate in 1-D results at these locations. The main concern is for nuclear parameters outside the tokamak in the OB side where streaming and engineering details are important. The effect of an order of magnitude increase will be mainly to increase the cooling time needed before hands-on maintenance by a few hours. This will be indicated when 1-D results are	
N3	Y.Gohar	The performance of the TF coils is sensitive to the nuclear heating load which impacts the operating pulse length. In addition, the peak IB insulator dose determines the allowable number of pulses based on the acceptable limit. Careful neutronics analyses are required to determine the peak nuclear parameters in coils based on a 3-D model.	The largest nuclear heating and insulator dose in TF coils occur in the IB leg on plasma side at midplane. 1-D calculations tend to overestimate results there compared to 3-D results with beter modeling of source distribution and geometry. Two- dimensional calculations are planned for FY03 assess the impact of plasma shape and neutron source profile on peak radiation effects in the inboard region at midplane. Shielding is primarily provided by the thin (5 cm) toroidally continuous VV and 5 cm FW/tiles. Tile heterogeneity and other details are not expected to counterbalance the overestimation in the results. Attenuation provided by tiles and VV at that location is only a factor of ~3. As more design details become available, we plan to perform multi-dimensional	
N4	Y. Gohar	Biological dose during operation needs to be determined to define the shielding requirements for the building and to check the compliance with the site dose requirements.	These calculations will be planned in the Sawan conceptual design phase.	
N5	Y. Gohar	Nuclear heating loads in the divertor ports based on the device geometry are required to provide input for sizing the cryoplant to achieve the operating scenario.	This requires 3-D calculations with details of geometrical configuration Sawan and arrangement of components and material in the divertor port. The effort is planned for the conceptual design phase.	