Tutorial: 3D toroidal physics - testing the boundaries of symmetry breaking

Don Spong

Oak Ridge National Laboratory

56th Annual Meeting

APS Division of Plasma Physics

October 27-31, 2014

New Orleans, Louisiana

Acknowledgements: S. Hirshman, J. Harris, A. Bortolon, D. del-Castillo-Negrete, J. Canik, J. Lore, A. Wingen, A. Briesemeister, H. Weitzner, A. Ware, F. Volpe, A. Cooper, E. Lazarus, A. Boozer, H. Mynick, S. Lazerson, I. Holod, Z. Lin, P. Helander, M. Landremann, A. Turnbull, A. Reimann

ORNL is managed by UT-Battelle for the US Department of Energy

3D symmetry-breaking effects are present in all toroidal fusion configurations

Engineering/economic constraints

- Finite number of TF coils, ferrous steel structures (blankets, beams, etc.), error fields from fabrication tolerances
- Particle/energy sources not symmetrically distributed (pellets, beams, RF)

Plasma generated

- Evolution to lower energy state: macro scale 3D instability structures
- Single-helicity states in reversed field pinches (RFP)
- Halo currents, pellet ablation clouds, neutrals, edge plasma blobs

Plasma control

- Coils for edge localized instabilities, resistive wall instabilities

Plasma optimization

- Vacuum rotational transform, confinement/stability optimization

The progression of 3D/symmetry-breaking in fusion: tokamaks, mirrors

The progression of 3D/symmetry-breaking in fusion: stellarators, reversed field pinch

Symmetry-breaking effects likely to remain and lead to new physics issues

Reactors

- Coils further from plasma, but ports/non-uniformity likely in surrounding ferritic steel structures
- 3D coils for control, rotational transform, optimization low recirculating power

How much symmetry-breaking can be tolerated?

- Up to some level masked by turbulence, collisions, ambipolar ${\sf E}_{\sf r}$ field, island suppression by flows, etc.
- Lower collisionality regimes of reactors => effects in current experiments may not be reactor compatible
 - Sufficient confinement to maintain H-mode pedestal profiles
 - Neoclassical toroidal viscosity rotation effects
- Energetic particle confinement, localized wall heat fluxes, lowered ignition margin

Advances in 3D simulation tools and diagnostics essential

OAK RIDGE

Outline

Characteristic forms of symmetry for 3D systems

- Field period symmetry, stellarator symmetry
- Quasi-symmetry in magnetic coordinates (Hamada, Boozer)
- Approximate degrees of deviation from axisymmetry
 - **3D tokamak** ($\delta B_{n \neq 0} / \delta B_{n=0} = 10^{-3}$ to 10^{-2})
 - Helical reversed field pinch state ($\delta B_{n\neq0} / \delta B_{n=0} = 0.03$ to 0.05)
 - **Stellarator** ($\delta B_{n \neq 0} / \delta B_{n=0} = 0.1$ to 0.3)
- − Resonant ($\delta B_{\perp} \neq 0$, m = nq) vs. non-resonant ($\delta B_{\perp} \sim 0$, m ≠ nq)
- 3D design
- Equilibrium
- Confinement, transport
- Stability
- Many new 3D theory/modeling approaches under development, cannot cover all in this talk

Basic symmetries for 3D systems:

Continuous symmetry:

same view after arbitrary rotation (N_{fp} →∞) magnetic field is integrable – Hamiltonian with an ignorable coordinate

Stellarator symmetry:

Turn around and stand on your head for an equivalent view Simplifies analysis: R, B ~ cos(mθ – nζ) [sin(mθ – nζ)] maintained in stellarators, but broken in up-down asymmetric tokamaks

Field period symmetry:

equivalent view after a discrete $2\pi/N_{fp}$ rotation e.g. = 36° for LHD (N_{fp} = 10)

Turn around

Turn around +vertical inversion

Synthesis of 3D configurations

- Coils outer magnetic surface shape physics properties
- 3D shapes open up very large design space: ~ 40 independent parameters (A. Boozer, L. P Ku, 2010) based on SVD analysis
- Axisymmetric tokamak shape parameters: $\varepsilon, \kappa, \delta$
- Thought experiment: quantize shape parameters into 10 levels
 - 10³ 2D configurations vs. 10⁴⁰ 3D configurations => "combinatorial explosion"
 - Other large numbers: 7x10²² visible stars, 6x10³⁰ prokaryotes (bacteria) on earth's surface

3D tokamaks: ELM/RWM controls

- Window-pane coils → produce magnetic field ⊥ to outer flux surfaces (~10⁻³ of axisymmetric field)
 - Resonant (m = nq) and non-resonant (m ≠ nq) fields present
 - Goal is to locally break up outer flux surfaces
 - Islands to limit pedestal region
 - suppress edge-localized mode (ELM) instabilities
- TF ripple, test blanket modules, nonsymmetric ferritic steel

Resonant fields - ELM coil

The 3D toroidal equilibrium challenge

- Basic equations
 - force balance $\vec{F} = \vec{\nabla} p \vec{J} \times \vec{B} = \vec{0}$
 - Ampere's law $\mu_0 \vec{J} = \vec{\nabla} \times \vec{B} \Rightarrow \vec{\nabla} \bullet \vec{J} = 0 \implies W = \int \left(\frac{|B|^2}{2\mu_0} + \frac{p}{\gamma 1}\right) d^3x$ absence of monopoles $\vec{\nabla} \bullet \vec{B} = 0$ Variational principle

(Kruskal, Kulsrud, 1958)

- Fundamental issues
 - Non-existence of 3D nested surface equilibria (Grad, 1967; Lortz, 1971) except for closed field line systems
 - Axisymmetry
 Grad-Shafranov equation (nonlinear elliptic) PDE)
 - 3D mixed nonlinear hyperbolic/elliptic system (also occurs in transonic flow, lower hybrid wave propagation, Weitzner, 2014)
 - Singular current sheets at rational surfaces, islands, chaotic field lines

Nested flux surface approach: VMEC (Variational Moments Equilibrium Code)

- **Constrains magnetic field lines to lie on nested flux surfaces** [Hirshman, Whitson (1983)] $\vec{B} = \vec{\nabla}\zeta \times \vec{\nabla}\Phi_{pol} + \vec{\nabla}\theta \times \vec{\nabla}\Phi_{tor}$ $\zeta, \theta = \text{toroidal/poloidal angles}, 2\pi\Phi_{pol,tor} = \text{mag. fluxes}$
- Steepest-descent minimization of variational form and force balance
 - Finds equilibria without fully resolving singular currents
 - generally good approximation to the more exact case with islands
 - Stellarators avoid large islands by magnetic shear or avoiding low order rational *i*-
- Inverse solution, solves for: $R = \sum R_{mn} (\Phi_{tor}) \cos(m\theta n\zeta); Z = \sum Z_{mn} (\Phi_{tor}) \sin(m\theta n\zeta)$
- Computationally efficient: used for many 3D physics calculations, stellarator optimization (STELLOPT), 3D reconstruction (V3FIT)
- Validation on W7-AS stellarator (A. Weller, 1999)

3D equilibria with broken flux surfaces

Nonlinear equilibrium solvers

- VMEC SIESTA (direct solver)
 - allows for component of B normal to initial surfaces, also, pressure evolves
- PIES (A. Reiman, 1986), HINT-2 (Y. Suzuki, 2006)
 - direct iterative solvers

Linearized MHD (takes into account rotation, 2-fluid effects, dissipation)

- Magnetic islands stagnate flows, requires transfer of torque
- M3D-C¹ (N. Ferraro)
- MARS-F (A. Turnbull)
- IPEC (J.-K. Park)

Other approaches

- Discontinuous pressure
 - SPEC (S. Hudson)
 - dp/dr = 0 on rational surfaces
- Superposition
 - Vacuum 3D field on 2D equilibrium

0.8 0.6 ₽ tor 0.4 0.2 0.0 a) 1.0 □ Vacuum δE 0.8 0.6 12 to 0.4 0.2 0.0 b) SIESTA 0 π**/2 3π/2 2**π NSTX islands with ELM coils

3D tokamak edge: corrugation, kinks, or peeling/ballooning?

New diagnostics

- Soft X-ray emissivity measurement
- Energy filtering image analysis reconstruction

Transport, stability effects

- Rotation braking, density pump-out
- Mode-locking thresholds
- Island screening vs. amplification
- Maintain wall/scrape-off-layer separation

Divertor effects

- Strike point splitting, homoclinic tangles
- Loss of detachment with 3D field application

GI1.3 APS/DPP Invited talk (2014)

Application of SIESTA to stellarators

- Due to the lack of a continuous symmetry, stellarators have regions with island structures
- NCSX/QPS optimization experience showed these islands can be minimized by coil design
- Original motivation for the development of SIESTA: provide a rapidly evaluated target function for island minimization
- Also important for physics/transport modeling

Particle Orbits in 3D fields

Guiding-center

- Canonical coordinates (A. Boozer, R. White, 1981)
 - Only involves |B| and currents in straight field line coordinates $\frac{d\psi}{dt} = \frac{1}{D} \left(I \frac{\partial B}{\partial \zeta} - g \frac{\partial B}{\partial \theta} \right) \left(\mu + \frac{mv_{\parallel}^2}{B} \right); \quad \frac{d\rho_{\parallel}}{dt} = \frac{t - \rho_{\parallel}g'}{D} \dot{P}_{\theta} + \frac{\rho_{\parallel}I'}{D} \dot{P}_{\zeta}$
 - $\frac{d\theta}{dt} = \left[\left(\mu + \frac{mv_{\parallel}^2}{B} \right) \frac{\partial B}{\partial \psi} + e \frac{\partial \Phi}{\partial \psi} \right] \frac{\partial \psi}{\partial P_{\theta}} + eBv_{\parallel} \frac{\partial \rho_{\parallel}}{\partial P_{\theta}}; \quad \frac{d\zeta}{dt} = \left[\left(\mu + \frac{mv_{\parallel}^2}{B} \right) \frac{\partial B}{\partial \psi} + e \frac{\partial \Phi}{\partial \psi} \right] \frac{\partial \psi}{\partial P_{\zeta}} + eBv_{\parallel} \frac{\partial \rho_{\parallel}}{\partial P_{\zeta}};$

- Non-canonical coordinates (Littlejohn, Cary 1979-83)
 - Lie-transform perturbation methods, variational action integral
 - Coordinate-free $\frac{d\vec{R}}{dt} = \frac{1}{B_{\parallel}^*} \left(v_{\parallel} \vec{B}^* + \vec{E}^* \times \hat{b} + \frac{\mu \hat{b} \times \vec{\nabla} B}{Ze} \right); \quad \frac{dv_{\parallel}}{dt} = Ze \left(\vec{E}^* + \vec{R} \times \vec{B}^* \right) \mu \vec{\nabla} B$ $\vec{B}^* = \vec{B} + \frac{mv_{\parallel}}{Ze} \vec{\nabla} \times \hat{b}; \quad \vec{E}^* = \vec{E} \frac{mv_{\parallel}}{Ze} \frac{\partial \hat{b}}{\partial t}$
- Lorentz equation: $\frac{d\vec{v}}{dt} = \frac{Ze}{m} (\vec{E} + \vec{v} \times \vec{B})$ G.C.

Issues for simulations: energy conservation, Liouville's theorem (conservation of phase space volume carried with particle), intersections of fast ion with walls, PFCs $\frac{1}{\sqrt{g}} \frac{\partial}{\partial z^i} \left(\sqrt{g} \frac{\partial z^i}{\partial \tau} \right) = 0$

Particle trajectories in 3D configurations: many new classes of orbits

Particle Monte Carlo simulations used extensively for energetic particle confinement studies in 3D systems

Stellarator neutral beam transport

Tokamaks with 3D perturbations

Fast ion exit locations ITER (TF+TBM)

Wall heat load localization (D. Spong 2011)

National Laboratory

Fast ion losses in DIII-D with TBM coils (SPIRAL code, G. Kramer, 2011-2013)

RWM coils: ASCOT and SPIRAL show CAK RII EP losses go to divertor plates

Orbit characteristics have also been a dominant factor in stellarator optimization

- Quasi-symmetry B = B(ψ,MΘ-Nζ) Nührenberg, Zille (1988)
 - Dual meaning: (1) hidden, (2) approximate
 - Quasi-helical (M,N integers)/toroidal (N=0)/poloidal (M=0)
 - Transport isomorphic to an tokamak
- Quasi-omnigeneity
 - $J = \oint \mathbf{v}_{\parallel} dl = J(\psi)$ Constant |B| contour spacing $-1.0 \oint 0.5 \bigoplus_{\substack{n=0.5 \\ n=0.5 \\ pcose}} 0.5 \bigoplus_{\substack{n=0.5 \\ n=0.5 \\ pcose}$
- Quasi-isodynamic
 - Poloidally closed |B| contours
- B_{min} and B_{max}
 - Min/max along field line
 - Const. on flux surface
 - Deeply trapped: $B_{min}(\psi)$
 - Transitional: $B_{max}(\psi)$

QPS

Collisional transport in 3D systems

- Characteristics unique to 3D
 - ripple transport regime $(1/\nu)$ trapped particle uncompensated radial drifts
 - ambipolarity condition: $\Gamma_{ion} = \Gamma_{elelctron}$ only for specific E_r
 - Stronger dependence on E_r than tokamak
 - Bootstrap current can be suppressed or reversed
 - Flows in direction of highest symmetry

1000

D 0.1

0.01

0.001

0.0001

10

Collisionality and E_r variation – low ripple moves $1/\nu$ to lower collisionality

Useful characterization of ripple transport levels: effective ripple parameter

Useful characterization of ripple transport levels: effective ripple parameter

conventional + optimized stellarators

(ψ/ψ

National Laboratory

Useful characterization of ripple transport levels: effective ripple parameter

•
$$D_{1/v} / D_{plateau} = \left(\frac{4}{3\pi}\right)^2 \frac{\left(2\varepsilon_{eff}\right)^{3/2}}{v^*}$$

 Nemov, Kasilov,Kernbichler (1999)

- $\varepsilon_{eff} = 0$ for ideal tokamak, quasisymmetry, or quasiomnigeneity ε_{eff}^{0}
- Simple measure of orbit deviations from ideal

conventional + optimized stellarators + 3D tokamaks ATF LHD norma shifted in 0.01 CHS W7-X W7-AS QPS HSX • 0.0001 NCSX 3/2 eff **DIII-D** with 10⁻⁶ **RWM** coils Rippled 10⁻⁸ tokamak filament/coil ITER 25 filaments/coil without Fe inserts 10⁻¹⁰ 0.2 0.4 0.6 0.8 0 1/2 OAK KIDGE National Laboratory **(**ψ/ψ edge

Useful characterization of ripple transport levels: effective ripple parameter

•
$$D/D_{plateau} = \left(\frac{4}{3\pi}\right)^2 \frac{\left(2\varepsilon_{eff}\right)^{3/2}}{v^*}$$

- Nemov, Kasilov,Kernbichler (1999)
- $\varepsilon_{eff} = 0$ for ideal tokamak, quasisymmetry, or quasiomnigeneity ε_{eff}
- Simple measure of orbit deviations from ideal

RFX Shax state ATF LHD norma shifted in 0.01 CHS W7-X W7-AS QPS HSX • 0.0001 NCSX 3/2 eff **DIII-D** with 10⁻⁶ **RWM** coils Rippled 10⁻⁸ tokamak filament/coil **ITER** 25 filaments/coil without Fe inserts 10⁻¹⁰ 0.2 0.4 0.6 0.8 0 1/2 OAK KIDGE National Laboratory **(**ψ/ψ edae

conventional + optimized stellarators + 3D tokamaks + helical RFPs

Transport coefficient calculations in 3D systems

- Drift Kinetic Equation Solver (DKES) W. van Rij, S. Hirshman (1989)
 - 3D: toroidal/poloidal angle, v_{\parallel}/v energy and radius, parameters, pitch angle scattering only, incompressible E x B approximation: $\vec{E} \times \vec{B} / B^2 \approx \vec{E} \times \vec{B} / \langle B^2 \rangle$
- Ripple-averaged GSRAKE (C. Beidler, et al., 1995)
- δf Monte Carlo (MOCA, VENUS, FORTEC-3D) verification study (C. Beidler, et al., NF, 2011)
- Moments method: correction for momentum nonconservation in DKES coefficients (H. Sugama, S. Nishimura, 2002; M. Taguchi, 1992)
- 4D (toroidal/poloidal angle, v_{\parallel}/v , energy SFINCS) M. Landremann (2014)
 - Momentum conserving collisions, full drift trajectories, local diffusive in radius
- Impurity transport with $\phi = \phi(\rho, \theta, \zeta)$ (J.M. García-Regaña, 2013; C. Beidler, 1995)
- 3D tokamak NTV (neoclassical toroidal viscosity)
 J. D. Callen, IAEA-2010, K. Shaing, 2003-10
 δB/B < ρ_{ion}/a regime

DKES/SFINCS comparisons for W7-X, M. Landremann (2014) APS/DPP 2014 Invited talk BI1.5

PENTA model – self-consistent (ambipolar) flows, currents with momentum corrections from Sugama, Nishimura method

where
$$X_{a1} \equiv -\frac{1}{n_a} \frac{\partial p_a}{\partial s} - e_a \frac{\partial \Phi}{\partial s}, \ X_{a2} \equiv -\frac{\partial T_a}{\partial s}, \ X_E = \langle BE_{\parallel} \rangle / \langle B^2 \rangle^{1/2}$$

H. Sugama, S. Nishimura, 2002; M. Taguchi, 1992; D. A. Spong, Phys. Plasmas, 2005

HSX provides test of parallel neoclassical transport properties for quasi-helical symmetry

PENTA code calculates plasma flow over wide range of ripple ε_{eff} :
tokamaks \rightarrow rippled tokamaks \rightarrow quasi-symmetric \rightarrow conventional stellaratorsITER ~10-6NSTX w/RMP ~10-4HSX ~3 x10-3LHD, TJ-II ~ 0.05 - 1HSX: CXRS measure large flow in direction
of quasi-symmetry 30_{25}_{20} Symmetry direction

Parallel flows in HSX agree well with PENTA:

- Importance of momentum conservation
- Large sheared flows reduce turbulent transport

J. Lore, et al., Phys. Plasmas (2010) A. Bresemeister, et al., PPCF (2013)

Tokamak 3D edge transport with islands, chaotic regions

- Parallel transport dominates
 - $-\chi_{||}/\chi_{\perp} \sim 10^9 10^{10}$
- LG (Lagrangian Green's function) method •
 - D. del-Castillo-Negrete, L. Chacon (2012)
 - stable, high accuracy method for high $\chi_{\parallel}/\chi_{\perp}$ regime
 - Can treat fields with complex filamentation/braiding
 - Reduced to solution of coupled 1D ODE's
 - Transport barriers possible even with chaotic structures

Partial heat transport barriers in the absence of magnetic flux surfaces

del-Castillo-Negrete, Blazevski Nucl. Fusion (2014)

equation in 3-D chaotic field

Stability issues for 3D configurations

- Energetic particle (EP) instabilities
 - Development of EP global gyrokinetic models
 - Tokamak 3D edge effects in NSTX
- Micro-turbulence
 - Optimization of 3D systems for turbulent transport

3D tokamak edge

- Tearing/kink/ballooning/peeling
 - 3D perturbations can both suppress (DIII-D) and trigger (NSTX, ASDEX-upgrade) ELMs
- Edge turbulence increase with 3D fields (G. McKee, et al., NF 2013)
- Recent theory:
 - linear δ W CAS3D stability (E. Strumberger, et al., NF, 2014)
 - 3D peeling-ballooning formulation (T. Weyens, R. Sanchez, et al., Phys. Plasmas, 2014)

• High β stellarator regimes

- Soft β limit, LHD β_{peak} ~ 5%; W7-AS β_{peak} ~ 7%
- Second stable hybrid systems, $\beta = 23\%$, $\beta_N = 19$ (A. Ware, PRL, 2002)

Toroidal mode number (n) is not a good quantum number for 3D configurations

- Field period symmetry: N_{fp} replicated elements
- Toroidal coupling => mode families, rather than single toroidal modes:

 $n' \pm n = kN_{fp}, k = 0, 1, 2, ...$

- Finite number of families: $1 + N_{fp}/2$ for even N_{fp} and $(N_{fp}-1)/2 + 1$ for odd N_{fp}
- Computational difficulty
 - High N_{fp} easiest
 - Low N_{fp} hardest

Gyrokinetic models for 3D configurations

PIC: domain divided up into cells

- grouped toroidally/radially for parallelization

Kinetic ions, fast ions: full GC orbits followed

 charges, currents allocated over local gyro radius template for field solve

Several options for electrons

- Adiabatic, Fluid/hybrid, Fully kinetic
- Electrostatic (ITG), electromagnetic (Alfvén instability)

Global vs. local

- GEM: flux tube approach generalized to flux surface each field line different in 3D
- Global: GTC, EUTERPE

Global gyrokinetic model (GTC) for Alfvén and core turbulence in 3D systems Other GTC-related presentations:

- Global, fully electromagnetic, nonlinear kinetic-MHD processes
- Gyrokinetic ions, fluid-kinetic hybrid electrons
- General 3D (VMEC) equilibria, ported to GPU and MIC

Microturbulence: JO3.00006, I. Holod; CP8.00006, Y. Xiao; CP8.00032, H. Xie; UP8.00006, D. **Fulton**

EP: NI1.00006, Z. Wang

MHD: BP8.00046. D. Liu: TP8.00107, J. McClenaghan

RF: NO3.00010, J. Bao; JP8.00080 X. Wei; TP8.00055, A. Kuley

NSTX Alfvén mode suppression correlated with 3D coils

1

Recent GENE optimizations show that ITG turbulence is sensitive to magnetic field geometry

- GENE model: full flux surface simulation, gyrokinetic ions, Boltzmann electrons, electrostatic turbulence
- ITG optimization proxy: $\kappa_r^-(g^{rr})^2$
- P. Xanthopoulos, H. Mynick, et al., Phys. Rev. Lett. 113, Oct. 10, 2014
- H. Mynick, P. Xanthopoulos, et al., PPCF 56 (2014)

Recent optimizations show that ITG turbulence sensitive to magnetic field geometry

- GENE model: full flux surface simulation, gyrokinetic ions, Boltzmann electrons, electrostatic turbulence
- P. Xanthopoulos, H. Mynick, et al., Phys. Rev. Lett. 113, Oct. 10, 2014
- J. Proll, et al., invited talk NO3-4, this meeting, TEM stability target: minimize particles with ω_{*e}ω_{de} > 0, applied to W7-X, HSX
- G. Weir, invited talk TI1.02, this meeting, GENE application to HSX

Conclusions/Summary

- 3D toroidal physics present in tokamaks/stellarators/ reversed field pinches
 - Excellent opportunity for testing/validating theory with new models applicable to all systems
- Increasing computational resources and new theoretical methods aid in the challenge of 3D
- 3D design/optimization: multi-physics integration, deeper design space than 2D. Opportunities:
 - Improved RFP confinement/sustainment
 - New directions in stellarator optimization (transport, microturbulence, MHD, energetic particle physics)
 - Tokamak 3D edge (better optimization for ELM/RWM suppression, divertor structure, control of detachment and scrape-off layer)

We're not alone in exploring symmetry-breaking: prevalent in nature as well as human-made objects:

\$