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Fire 1s a logical next step between JET/JET-U
and a fusion power plant

 Provides critical data for
extrapolating to reactors

* Provides data point for critical
benchmarking of advanced
simulation codes

« Will provide focus to
experimental and theory
programs

» Stimulate development of
advanced numerical
simulation

AIRES designs
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FIRE operating modes

Standard operating mode (LF)
High-field (shorter pulse mode)
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passive

Tokamak Simulation Code (TSC) is unique tool

for modeling the evolution of a free-boundary

axisymmetric plasma on the resistive time scales

conductors
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PF coil with
circuits and
feedback systems

e arbitrary transport model * current-drive,

« neoclassical-resistivity * alpha-heating,

e bootstrap-current, * radiation,

« auxiliary-heating * pellet-injection,
« ballooning-mode transport  * sawtooth model,
« circuit equations for all the poloidal field coils
 induced currents in passive conductors, halo

» feedback systems for I, position, and shape.

TSC was chosen by ITER as the standard model for:
 poloidal flux consumption and pulse length
 timescales for current rampup and rampdown
 shape control requirements

New Directions:
* integrated modeling of core and edge

 improved models of non-linear saturation of high-f3
m=1 mode, ELMs, balloon-unstable region

Jardin, et al, Nucl. Fus. 39 (2000) 923
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7 Pairs of PF coils maintain meet shape requirements
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FIRE Discharge Trajectories in Stability Space
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Discharge trajectories in /;/2 - q4s Space remain in stable regime
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Physics Question: Role of the m=1 mode

* Ideal MHD theory predicts m=1,n=1 mode unstable at high 3 for q, < 1

* High-n ballooning modes also predicted to be unstable in the vicinity of
and interior to the q=1 surface

 Proper physics description must take into account energetic particle
drive, kinetic stabilization, 2-fluid effects, and non-linear saturation
mechanism

* This should be [and is] one of the major thrusts of the 3D macroscopic
simulations communities

* FIRE will provide critical data point for both extrapolations and for code
benchmarking



Low Field: 10T, 6.5 MA

Balloon and Mercier stability
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High Field: 12T, 7.7 MA

Balloon and Mercier stability
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Comparison of unstable Eigenvalues

Low Field High Field
v* =-.0083 V> =-.0039



Critical B fit for g=1 sawtoothed induced m/n=3/2 NTM

Physics
question: NTM 7 |x %

333 33

* neoclassical tearing 0.010
mode sets B limits in
many long-pulse

. 0.008 -
discharges

» scaling of this to new

devices largely result of =
empirical fitting of quasi-
linear formula 0.004 -

* this is another major ‘-k\% aeE il
. 2.7253 3

thrust of 3D macroscopic o0 1
modeling effort

0.006 -

* FIRE Wlll prOVide 0.000 : : . . . .
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vV=V/em,

(From LaHaye, Butter, Guenter, Huysmans, Marashek, and Wilson)



Kinetic MHD 1s becoming
much more capable

TFTR Equilibrium

R=2.62 m, a=0.95 m,

B,1(0) = 5%, B, +B, = const,
B=4.45T

Deuterium hot slowing down
ions v, = 10° cm/sec, v,/v =1,

R/p, = 55.6 U
Fishbone branch reproduced

by NOVA-2 and M3D

Linear stabilization phase of [finear]
n=1 mode agrees for 3 codes a

Fu, Gorelenkov



FIRE regular ¢-profile HINT- analysis
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FIRE regular g-profile plasma variations

FErL
case |nf0},10"em * | np(0), 10"em * | T0), keV | nfngy | Praw, MW | 8,00}, %
1-unst. 559 4 22 20 0.6b 257 15
2-unst. b.39 4 B2 17.56 0.75 262 1.05
3-stab. f.45 5. 62 15 0.89 263 0.69
4-atab 894 b. 74 125 1.06 250 0.4

In regular g-protile there is window for HTAE free operation.
KTAEs are still unstable.
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Stability to all modes is achieved at same 3, for relaxed profiles

L
It the profile 1s allowed to relax without particle loss, stability to these Alfven waves
18 achieved at higher Sy — 1%.
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Inversed q-profile
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RTAE is found near q,...at criical Sp,m — 0.23% at rfa — 0.4, {local 8, — 0.047%).

NO relaxed RTAE stable profiles were found. Alphas will be tragported cutside g
surface.



Resistive Wall Mode and Active Feedback Stabilization

K- PLRME

We are developing a major extension of the linear stability codes to
include resistive walls, coils, circuit equations, feedback systems,
with self-consistent plasma response...interface with both PEST and
GATO—also benchmark with Columbia VALEN code
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VACUUM model includes plasma, Induced currents in wall in absence
wall, and coil surface of feedback

M. Chance,M. Chu et al. IAEA 2000, Phys. Plasmas 4 (1997) 2161



®* VS (qqe TOr various YT, using GATO + VACUUM: for a

conformal resistive shell at b=0.5 a.

*YT, — oo reproduces
perfectly conducting
shell results

*yt,— 0 gives no-wall g
limit

omega

*YT, In between gives
intermediate result

Future Plans:

e include sensor and
feedback coils in
system while keeping
the self-adjoint

property
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M3D code is being applied to explain physical mechanism
for deep penetration of inside pellet launch

® first 3D simulation of this
experimentally discovered
phenomena

[Strauss, Park, et al, Phys. Plasmas
7 (2000) 250]

@

* led to development of 2D
model now in TSC code

[Jardin, Schmidt, et al, Nucl.
Fusion 39 (2000) 923]




Energy Confinement

Empirical scaling laws predict FIRE will achieve Q=10 at Hyg=1.2 (LF)
or Hye=1.0 (HF) using ITER98-H ... (need t; ~ 0.5 s)

— Need to examine scaling of narrower subsets of data: eg. With n/n,; > 0.6,
T/T,<1.5, qy5 <3.2,3,>0.5

Good theory based model of plasma confinement would increase
confidence...such as what may come from Gyrokinetic codes
— FIRE would provide invaluable calibration point for such codes

Good theory based model of physics of L-H transition would increase
confidence: threshold power, edge pedestal height and width

Some uncertainties regarding impact of sawtooth, NTM, and other
MHD on energy confinement



Other Physics Issues for FIRE

conventional operating modes

* the effect of H-mode profiles on MHD stability (Manickam)

* relation to ELMS, n ~ 5-10 peeling modes, bootstrap currents
« error fields and locked modes (LaHaye, et al)
* need to assess disruption effects (Kessel, Ulrickson)

reversed shear operating modes

 characterization of no-wall advanced mode for entire discharge (Ramos)

» wall stabilized advanced modes (GA/PPPL/Columbia experiments on DIII)

other advanced modes

* off axis CD to raise q, (Kessel)

* edge current drive to improve stability ()



Summary

* No physics “showstoppers” have been identified, but lots of interesting
physics issues will come into play

* TSC discharge simulations exist for both the high-field (12 T, 7.7 MA,
H=1.0) and low-field ( 10T, 6.75 MA, H=1.2) operating modes with t; ~0.5 s

e Overall, MHD stability looks favorable. Primary uncertainty due to:
 MHD activity near g=1 surface
» edge currents due to H-mode pedestals
 neoclassical tearing modes
« error fields and locked modes

* Experimental prototyping of these modes would be very beneficial

* Advanced computer simulation models should provide much information
regarding macroscopic stability and turbulent transport

* “Advanced Modes” need to be further developed



