Physics Regimes and Issues for FIRE

S. C. Jardin

With input from

N.Gorelenkov, C.Kessel, J.Manickam, D.Meade, P.Rutherford, F.Perkins, R.White

> NSO PAC Meeting General Atomics July 20,21 2000

Fire is a logical next step between JET/JET-U and a fusion power plant

- Provides critical data for extrapolating to reactors
- Provides data point for critical benchmarking of advanced simulation codes
- Will provide focus to experimental and theory programs
- Stimulate development of advanced numerical simulation

FIRE operating modes

	I _P (MA)	B_{T}	T(s)	$\beta_{ m N}$	\mathbf{f}_{BS}
Standard operating mode (LF)	6.5	10	21	2.7	0.3
High-field (shorter pulse mode)	7.7	12	12	1.9	0.2
Advanced Tokamak 1 st stability	5.6	9	30	2.9	0.5
Reversed Shear Wall stabilized	4.5	6.7	60	4.5	0.8
Long-pulse DD LHCD(14)/ICRF(6)	2	4	250	2.5	0.4

Tokamak Simulation Code (TSC) is unique tool for modeling the evolution of a free-boundary axisymmetric plasma on the resistive time scales

circuits and feedback systems

- arbitrary transport model
- neoclassical-resistivity
- bootstrap-current,
- auxiliary-heating
- ballooning-mode transport

- current-drive,
- alpha-heating,
- radiation,
- pellet-injection,
- sawtooth model,
- circuit equations for all the poloidal field coils
- induced currents in passive conductors, halo
- feedback systems for I_p , position, and shape.

TSC was chosen by ITER as the standard model for:

- poloidal flux consumption and pulse length
- timescales for current rampup and rampdown
- shape control requirements

New Directions:

- integrated modeling of core and edge
- improved models of non-linear saturation of high- β m=1 mode, ELMs, balloon-unstable region

Plasma Current and Toroidal Field

L

7 Pairs of PF coils maintain meet shape requirements

High Field

Low Field

FIRE Discharge Trajectories in Stability Space

Stability condition $\beta_N < 4 \ell_I$ easily satisfied

Discharge trajectories in $\ell_i/2$ - q_{95} space remain in stable regime

Physics Question: Role of the m=1 mode

- Ideal MHD theory predicts m=1,n=1 mode unstable at high β for $q_0 < 1$
- High-n ballooning modes also predicted to be unstable in the vicinity of and interior to the q=1 surface
- Proper physics description must take into account energetic particle drive, kinetic stabilization, 2-fluid effects, and non-linear saturation mechanism
- This should be [and is] one of the major thrusts of the 3D macroscopic simulations communities
- FIRE will provide critical data point for both extrapolations and for code benchmarking

Low Field: 10 T, 6.5 MA

High Field: 12 T, 7.7 MA

PEST unstable eigenfunction at t=12.5 sec

Comparison of unstable Eigenvalues

High Field $\gamma^2 = -.0039$

Physics question: NTM

 neoclassical tearing mode sets β limits in many long-pulse discharges

• scaling of this to new devices largely result of * empirical fitting of quasilinear formula

• this is another major thrust of 3D macroscopic modeling effort

• FIRE will provide critical data point

(From LaHaye, Butter, Guenter, Huysmans, Marashek, and Wilson)

Kinetic MHD is becoming much more capable

TFTR Equilibrium R=2.62 m, a=0.95 m, $\beta_{pl}(0) = 5\%$, $\beta_{pl} + \beta_{h} = const$, B=4.45 T

Deuterium hot slowing down ions $v_h = 10^9$ cm/sec, $v_h/v_A=1$, $R/\rho_h = 55.6$

Fishbone branch reproduced by NOVA-2 and M3D

Linear stabilization phase of n=1 mode agrees for 3 codes

Fu, Gorelenkov

PPPL

High-n RTAE modes for $\beta_0 > 0.65\%$

Other parameters: $R=2, m, a=0.525m, B=10T, I_p=6.45MA;$ $n_c=5 \times 10^{14} (1-\Psi^{0.281})^{0.1384}, cm^{-3}, \beta_{th}(\Psi)=9.7(1-0.876\Psi^{0.557})^{1.73}\%.$

Gorelenkov

FIRE regular q-profile plasma variations

PPPL

case	$n_{c}(0), 10^{14} cm^{-3}$	$n_{DT}(0), 10^{14} cm^{-3}$	$T_{c}(0), keV$	n/n_{Gr}	P_{fus}, MW	$eta_lpha(0),\%$
1-unst.	5.59	4.22	20	0.66	257	1.5
2-unst.	6.39	4.82	17.5	0.75	262	1.05
3-stab.	7.45	5.62	15	0.89	263	0.69
4-stab	8.94	6.74	12.5	1.06	250	0.4

In regular q-profile there is window for RTAE free operation.

KTAEs are still unstable.

KTAE: $\beta_{0 \alpha rit} = 0.5\%$ at r/a = 0.35 analysis and $\beta_{\alpha rit} = 0.33\%$

Stability to all modes is achieved at same β_{α} for relaxed profiles

If the profile is allowed to relax without particle loss, stability to these Alfven waves is achieved at higher $\beta_{0 \alpha crit} = 1\%$.

PPPL

PPPL

RTAE is found near q_{min} at critical $\beta_{0acrit} = 0.23\%$ at r/a = 0.4, (local $\beta_{\alpha} = 0.047\%$). NO relaxed RTAE stable profiles were found. Alphas will be trasported outside q_{min} surface.

Resistive Wall Mode and Active Feedback Stabilization

We are developing a major extension of the linear stability codes to include resistive walls, coils, circuit equations, feedback systems, with self-consistent plasma response...interface with both PEST and GATO—also benchmark with Columbia VALEN code

M. Chance, M. Chu et al. IAEA 2000, Phys. Plasmas 4 (1997) 2161

 $\omega^2 \text{ vs } q_{edge}$ for various $\gamma \tau_s$ using GATO + VACUUM: for a conformal resistive shell at b = 0.5 a.

property

M.Chance, PoP, 4 (1997) 2161

M3D code is being applied to explain physical mechanism for deep penetration of inside pellet launch

• first 3D simulation of this experimentally discovered phenomena

[Strauss, Park, et al, Phys. Plasmas **7** (2000) 250]

• led to development of 2D model now in **TSC** code

[Jardin, Schmidt, et al, Nucl. Fusion **39** (2000) 923]

Energy Confinement

- Empirical scaling laws predict FIRE will achieve Q=10 at H_{98} =1.2 (LF) or H_{98} =1.0 (HF) using ITER98-H ... (need $\tau_E \sim 0.5$ s)
 - Need to examine scaling of narrower subsets of data: eg. With $n/n_{GR} > 0.6$, $T_i/T_e < 1.5$, $q_{95} < 3.2$, $\beta_{\theta} > 0.5$
- Good theory based model of plasma confinement would increase confidence...such as what may come from Gyrokinetic codes
 - FIRE would provide invaluable calibration point for such codes
- Good theory based model of physics of L-H transition would increase confidence: threshold power, edge pedestal height and width
- Some uncertainties regarding impact of sawtooth, NTM, and other MHD on energy confinement

Other Physics Issues for FIRE

conventional operating modes

- the effect of H-mode profiles on MHD stability (Manickam)
 - relation to ELMS, $n \sim 5-10$ peeling modes, bootstrap currents
- error fields and locked modes (LaHaye, et al)
- need to assess disruption effects (Kessel, Ulrickson)

reversed shear operating modes

- characterization of no-wall advanced mode for entire discharge (Ramos)
- wall stabilized advanced modes (GA/PPPL/Columbia experiments on DIII)

other advanced modes

- off axis CD to raise q_0 (Kessel)
- edge current drive to improve stability (?)

Summary

• No physics "showstoppers" have been identified, but lots of interesting physics issues will come into play

• TSC discharge simulations exist for both the high-field (12 T, 7.7 MA, H=1.0) and low-field (10T, 6.75 MA, H=1.2) operating modes with $\tau_{\rm E} \sim 0.5$ s

- Overall, MHD stability looks favorable. Primary uncertainty due to:
 - MHD activity near q=1 surface
 - edge currents due to H-mode pedestals
 - neoclassical tearing modes
 - error fields and locked modes
- Experimental prototyping of these modes would be very beneficial

• Advanced computer simulation models should provide much information regarding macroscopic stability and turbulent transport

• "Advanced Modes" need to be further developed