Advanced Tokamak Scenarios for the Fusion Ignition Research Experiment

C. Kessel

Princeton Plasma Physics Laboratory

General Atomics, April 9, 2002

FIRE is Pursuing <u>Burning</u> Advanced Tokamak Plasmas

- High potential benefits of Advanced Tokamak operation make AT research mandatory on any Burning Plasma Experiment (Snowmass 1999)
- ARIES Power Plant studies show that AT plasmas provide
 - High β ----> high fusion power density
 - Large bootstrap (self-driven) current and good alignment ----> low recirculating power
 - Good plasma confinement consistent with high β and high bootstrap current ----> high fusion gain Q
 - <u>This combination drives down the machine size and the cost of electricity (COE)</u>
- FIRE must demonstrate that these plasmas can be established and maintained in a stationary state

Fusion Ignition Research Experiment

- FIRE is a compact high field tokamak, using copper coils, for the study of burning plasma physics
 - $Q (P_{fus}/P_{aux}) = 5-10$
 - Flattop times \geq 1-2 current diffusion times
 - Study and resolve both standard (H-mode) and advanced tokamak (AT) burning physics issues
 - Keep the device cost at \approx \$1 B

Limitations for FIRE's Flattop Time

- TF coil heating
 - For $B_T = 10$ T, t(flattop) = 20 s
 - For $B_T = 8.5 \text{ T t(flattop)} = 35 \text{ s}$
- Nuclear heating of Vacuum Vessel (stress limit)

- For $P_{\text{fusion}} = 200 \text{ MW}$, t(flattop) = 20 s

- Nuclear and Surface heat load on FW tiles (temp limit)
 - For 120% radiated power assumption, not limiting until t(flattop) > 50 s
- PF coil heating (rarely limiting, except..)
 - For low li Advanced Tokamak modes, Ip < 5 MA to allow t(flattop) = 20-35 s, due to divertor coil heating and stress limits

Fusion Ignition Research Experiment

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

FIRE's Advanced Tokamak Development is a Increase β Sequence of Improvements

Stabilize NTM's

Stabilize n=1 RWM

Stabilize n>1 RWM's

Increase fbs and fnoninductive

Increase β

Current drive

Control of n and T profiles

Extend pulse lengths

More sophisticated control

<u>Optimize plasma</u> edge/SOL/divertor Attractive AT plasmas have been identified by ARIES Power Plant studies

FIRE Efforts to Self-Consistently Simulate Advanced Tokamaks

0-D Systems Analysis:

Determine viable operating point global parameters that satisfy constraints <u>Plasma Equilibrium and Ideal MHD Stability</u>:

Determine self-consistent stable plasma configurations to serve as targets

Current Drive:

Determine current drive efficiencies and deposition profiles

Transport: (GLF23 and pellet fueling models to be used in TSC)

Determine plasma density and temperature profiles consistent with heating/fueling and plasma confinement

Dynamic Evolution Simulations:

Demonstrate self-consistent startup/formation and control including transport, current drive, and equilibrium

Edge/SOL/Divertor:

Find self-consistent solutions connecting the core plasma with the divertor that are consistent with bootstrap and CD

FIRE Has Adopted the AT Features Identified by ARIES Studies

- High toroidal field
- Double null
- Strong shaping - $\kappa = 2.0, \delta = 0.7$
- Internal vertical position control coils
- Cu wall stabilizers for vertical and kink instabilities
- Very low ripple (0.3%)
- ICRF/FW on-axis CD

- LH off-axis CD
- LHCD stabilization of NTMs
- Tungsten divertor targets
- Feedback coil stabilization of RWMs
- Burn times exceeding current diffusion times
- Pumped divertor/pellet fueling/impurity control to optimize plasma edge

Systems Analysis Shows That H98 > 1.2 for Q=5

Generate large database of solutions to power balance

 $\beta_N = 2.0-5.0$ $q_{95} = 3.1-4.7$ $n(0)/\langle n \rangle = 1.25-2.0$ $n/n_{Gr} = 0.3-0.95$ Bt = 6.5-9.5 T Q = 5-10

Apply screens to database to find trends and viable operating points

 $P_{CD} < P_{AUX}$ $P_{CD} < 35 MW$

 $P_{\rm fusion} < 250 \ MW$

FIRE Can Access a Large AT Operating Space within Physics and Eng. Constraints

Systems Analysis Show Critical Requirements for Burning AT Plasmas

- Burning AT plasmas must simultaneously meet
 - Plasma power balance (a given Q)
 - $P_{CD} \leq Paux$
 - <u>Can't operate at very low</u> <u>density to make CD</u> <u>efficiency higher</u>
- Density profile peaking
 - Pellet fueling
 - Internal transport barrier (ITB) in particle channel
 - <u>Very broad density profiles</u> require high H98 and P_{CD}

- Ability to approach or exceed Greenwald density limit
 - Requires high bootstrap fraction
 - <u>High n/nGr reduces</u>
 <u>required H98 and increases</u>
 <u>required PCD</u>
- IPB98(y,2) global energy confinement scaling penalizes higher β
 - Individual experiments do not support this trend
 - Predictions for H98 factors may be pessimistic

Stabilization of NTMs with LHCD on FIRE

Pursuing PEST3 resistive analysis

Compass-D shown NTM stabilization with LHCD

Equilibrium, Ideal MHD Stability and Current Drive Identify AT Target Plasmas

FIRE's Advanced Tokamak Plasmas are Prototypes Leading to ARIES-AT

Stabilization of the n=1 RWM on FIRE

PEST2 and VALEN analysis used to determine possible strategies for raising β by feedback stabilization based on DIII-D experience

ICRF/FW Viable for FIRE On-Axis CD

ICRF/FW(ORNL)

With existing ICRF heating system P(ICRF)=20 MW

ω=80-120 MHz

2 strap antennas

 $n(0)=5x10^{20}/m^{3}$

T(0)=14 keV

--> 40% power into good part of spectrum

--> 40% power absorbed on ions

--> 0.02 A/W

--> maximum I(FW)=0.4 MA ICRF Heating system can provide on-axis current required, with more efficient on-axis CD as an upgrade

LHCD Viable for FIRE Off-Axis CD

C-Mod LH Launcher Design: $\omega = 4.6$ GHz, n|| = 2-4, $\Delta n|| = 0.3$

Quasi-Stationary AT Burning Plasmas are the Primary Focus for FIRE

- Plasma current is <u>ramped up with inductive and non-</u> <u>inductive current</u> to produce a quasi-stationary plasma at the beginning of flattop
- The safety factor in flattop is held by non-inductive current
 - Bootstrap current
 - LHCD off-axis
 - ICRF/FW on axis
- Flattop times 1-3 x τ_{jdiff} (20-50 s)
- Q = 5-10
- H98(y,2) > 1.0

transient burning AT plasmas can be produced with inductive current

long pulse DD (non-burning) plasmas can be created with pulse lengths up to >200 s at Bt=4 T, Ip=2 MA

TSC-LSC Simulation Demonstrates Quasi-Stationary Burning AT Plasma in FIRE

Quasi-stationary AT plasmas

Ip ramped up with both inductive and noninductive CD

Flattop sustained by 100% non-inductive CD

 $t(flattop) > 1 \times \tau(current relax)$

Q = 5-10

Transient AT plasmas with dominantly inductive current

Long pulse DD (nonburning) 100% non-inductive at reduced Ip and Bt

TSC-LSC Simulation of Q=7.8 Burning AT Plasma

TSC-LSC Simulation of Q=7.8 Burning AT Plasma

TSC-LSC Simulation of Q=7.8 Burning AT Plasma

TSC-LSC Simulation of Q=7.8 Burning AT Plasma

Burning AT Plasma Issues

- Ripple losses are larger due to high q, low Ip and low B_T
- Alfven eigenmodes are expected to be more severe
- Higher order NTMs
 - (5,2) and (3,1) surfaces
- RWM stabilization
 - n=1 feedback
 - Then what for n>1 RWM's
- Plasma edge conditions
 - L-mode or H-mode
 - Radiation characteristics
 - Impurities

- Core T,n profile control
 - Density peaking for bootstrap current
 - Internal transport barrier formation
- Plasma rotation
 - Is rotation needed with feedback for RWM stability
 - Sheared rotation for turbulence suppression
- Experimental progress on AT plasmas is critical
 - ASDEX-U, C-Mod, DIII-D, JET, JT-60U

FIRE Can Access a Large Operating Space for Advanced Tokamak Plasmas

- OD analysis indicates an operating space for H98 > 1.2-1.4for Q=5-10 within physics and engineering constraints
- Stable equilibria consistent with RFCD capability have been found with $\beta_N \ge 2.5$ and $f_{bs} \ge 0.5$ requiring no kink stabilization, and $\beta_N \ge 3.5$ and $f_{bs} \ge 0.75$ with n=1 RWM stabilization
- ICRF/FW and LHCD analysis indicate these are viable CD sources
- TSC/LSC analysis show that quasi-stationary burning plasmas can be established and maintained for current diffusion time scales
- Several critical issues exist for burning AT plasmas